Logarithm of Power/Natural Logarithm

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x \in \R$ be a strictly positive real number.

Let $a \in \R$ be a real number such that $a > 1$.

Let $r \in \R$ be any real number.

Let $\ln x$ be the natural logarithm of $x$.


Then:

$\map \ln {x^r} = r \ln x$


Proof 1

Consider the function $\map f x = \map \ln {x^r} - r \ln x$.

Then from:

The definition of the natural logarithm
The Fundamental Theorem of Calculus
The Power Rule for Derivatives
The Chain Rule for Derivatives:
$\forall x > 0: \map {f'} x = \dfrac 1 {x^r} r x^{r-1} - \dfrac r x = 0$

Thus from Zero Derivative implies Constant Function, $f$ is constant:

$\forall x > 0: \map \ln {x^r} - r \ln x = c$

To determine the value of $c$, put $x = 1$.

From Logarithm of 1 is 0:

$\ln 1 = 0$

Thus:

$c = \ln 1 - r \ln 1 = 0$

$\blacksquare$


Proof 2

\(\ds \ln a\) \(=\) \(\ds b\)
\(\ds \leadstoandfrom \ \ \) \(\ds e^b\) \(=\) \(\ds a\)
\(\ds \leadsto \ \ \) \(\ds \paren {e^b}^c\) \(=\) \(\ds a^c\)
\(\ds \leadsto \ \ \) \(\ds e^{c b}\) \(=\) \(\ds a^c\) Exponential of Product
\(\ds \leadsto \ \ \) \(\ds \ln e^{c b}\) \(=\) \(\ds \ln a^c\)
\(\ds \leadsto \ \ \) \(\ds c b\) \(=\) \(\ds \ln a^c\) Exponential of Natural Logarithm


By hypothesis, $\ln a = b$.

Multiplying both sides by $c$:

$c \ln a = c b$

But we proved above that:

$c b = \ln a^c$

$\blacksquare$


Proof 3

Here we adopt the definition of $\ln x$ to be:

$\ds \ln x := \int_1^x \dfrac {\d t} t$
\(\ds \map \ln {x^r}\) \(=\) \(\ds \int_1^{x^r} \dfrac {\d t} t\) Definition of Natural Logarithm
\(\ds \) \(=\) \(\ds \int_1^x \dfrac {r t^{r - 1} \rd t} {t^r}\) Integration by Substitution: $t \mapsto t^r$, $\d t \mapsto r t^{r - 1} \rd t$, $1 \mapsto 1$, $x^r \mapsto x$
\(\ds \) \(=\) \(\ds r \int_1^x \dfrac {\d t} t\) Primitive of Constant Multiple of Function
\(\ds \) \(=\) \(\ds r \ln x\) Definition of Natural Logarithm

$\blacksquare$


Sources