Natural Number Multiplication is Associative

From ProofWiki
Jump to navigation Jump to search

Theorem

The operation of multiplication on the set of natural numbers $\N$ is associative:

$\forall x, y, z \in \N: \paren {x \times y} \times z = x \times \paren {y \times z}$


Proof 1

From Index Laws for Semigroup: Product of Indices we have:

$+^{z \times y} x = \map {+^z} {+^y x}$

By definition of multiplication, this amounts to:

$x \times \paren {z \times y} = \paren {x \times y} \times z$

From Natural Number Multiplication is Commutative, we have:

$x \times \paren {z \times y} = x \times \paren {y \times z}$

$\blacksquare$


Proof 2

We are to show that:

$\paren {x \times y} \times n = x \times \paren {y \times n}$

for all $x, y, n \in \N$.


From the definition of natural number multiplication, we have that:

\(\ds \forall m, n \in \N: \, \) \(\ds m \times 0\) \(=\) \(\ds 0\)
\(\ds m \times \paren {n + 1}\) \(=\) \(\ds \paren {m \times n} + m\)


Let $x, y \in \N$ be arbitrary.

For all $n \in \N$, let $\map P n$ be the proposition:

$\paren {x \times y} \times n = x \times \paren {y \times n}$


Basis for the Induction

$\map P 0$ is the case:

\(\ds \paren {x \times y} \times 0\) \(=\) \(\ds 0\)
\(\ds \) \(=\) \(\ds x \times 0\)
\(\ds \) \(=\) \(\ds x \times \paren {y \times 0}\)

and so $\map P 0$ holds.

This is our basis for the induction.


Induction Hypothesis

Now we need to show that, if $\map P k$ is true, where $k \ge 0$, then it logically follows that $\map P {k + 1}$ is true.


So this is our induction hypothesis:

$\paren {x \times y} \times k = x \times \paren {y \times k}$


Then we need to show:

$\paren {x \times y} \times \paren {k + 1} = x \times \paren {y \times \paren {k + 1} }$


Induction Step

This is our induction step:


\(\ds \paren {x \times y} \times \paren {k + 1}\) \(=\) \(\ds \paren {\paren {x \times y} \times k} + \paren {x \times y}\) Definition of Natural Number Multiplication
\(\ds \) \(=\) \(\ds \paren {x \times \paren {y \times k} } + \paren {x \times y}\) Induction Hypothesis
\(\ds \) \(=\) \(\ds \paren {x \times y} + \paren {x \times \paren {y \times k} }\) Natural Number Addition is Commutative
\(\ds \) \(=\) \(\ds x \times \paren {y + \paren {y \times k} }\) Natural Number Multiplication Distributes over Addition
\(\ds \) \(=\) \(\ds x \times \paren {\paren {y \times k} + y}\) Natural Number Addition is Commutative
\(\ds \) \(=\) \(\ds x \times \paren {y \times \paren {k + 1} }\) Definition of Natural Number Multiplication

So $\map P k \implies \map P {k + 1}$ and the result follows by the Principle of Mathematical Induction.

$\blacksquare$


Proof 3

In the Axiomatization of 1-Based Natural Numbers, this is rendered:

$\forall x, y, z \in \N_{> 0}: \paren {x \times y} \times z = x \times \paren {y \times z}$


Using the following axioms:

\((\text A)\)   $:$     \(\ds \exists_1 1 \in \N_{> 0}:\) \(\ds a \times 1 = a = 1 \times a \)      
\((\text B)\)   $:$     \(\ds \forall a, b \in \N_{> 0}:\) \(\ds a \times \paren {b + 1} = \paren {a \times b} + a \)      
\((\text C)\)   $:$     \(\ds \forall a, b \in \N_{> 0}:\) \(\ds a + \paren {b + 1} = \paren {a + b} + 1 \)      
\((\text D)\)   $:$     \(\ds \forall a \in \N_{> 0}, a \ne 1:\) \(\ds \exists_1 b \in \N_{> 0}: a = b + 1 \)      
\((\text E)\)   $:$     \(\ds \forall a, b \in \N_{> 0}:\) \(\ds \)Exactly one of these three holds:\( \)      
\(\ds a = b \lor \paren {\exists x \in \N_{> 0}: a + x = b} \lor \paren {\exists y \in \N_{> 0}: a = b + y} \)      
\((\text F)\)   $:$     \(\ds \forall A \subseteq \N_{> 0}:\) \(\ds \paren {1 \in A \land \paren {z \in A \implies z + 1 \in A} } \implies A = \N_{> 0} \)      


Let $x, y \in \N_{> 0}$ be arbitrary.

For all $n \in \N_{> 0}$, let $\map P n$ be the proposition:

$\paren {x \times y} \times n = x \times \paren {y \times n}$


Basis for the Induction

$\map P 1$ is the case:

\(\ds \paren {x \times y} \times 1\) \(=\) \(\ds x \times y\) Axiom $\text A$
\(\ds \) \(=\) \(\ds x \times \paren {y \times 1}\) Axiom $\text A$

and so $\map P 1$ holds.

This is our basis for the induction.


Induction Hypothesis

Now we need to show that, if $\map P k$ is true, where $k \ge 0$, then it logically follows that $\map P {k^+}$ is true.


So this is our induction hypothesis:

$\paren {x \times y} \times k = x \times \paren {y \times k}$


Then we need to show:

$\paren {x \times y} \times \paren {k + 1} = x \times \paren {y \times \paren {k + 1} }$


Induction Step

This is our induction step:


\(\ds \paren {x \times y} \times \paren {k + 1}\) \(=\) \(\ds \paren {\paren {x \times y} \times k} + \paren {x \times y}\) Axiom $\text B$
\(\ds \) \(=\) \(\ds \paren {x \times \paren {y \times k} } + \paren {x \times y}\) Induction Hypothesis
\(\ds \) \(=\) \(\ds \paren {x \times y} + \paren {x \times \paren {y \times k} }\) Natural Number Addition is Commutative
\(\ds \) \(=\) \(\ds x \times \paren {y + \paren {y \times k} }\) Natural Number Multiplication Distributes over Addition
\(\ds \) \(=\) \(\ds x \times \paren {\paren {y \times k} + y}\) Natural Number Addition is Commutative
\(\ds \) \(=\) \(\ds x \times \paren {y \times \paren {k + 1} }\) Definition of Natural Number Multiplication

So $\map P k \implies \map P {k + 1}$ and the result follows by the Principle of Mathematical Induction.

$\blacksquare$


Sources