Negative Binomial Distribution Gives Rise to Probability Mass Function/First Form

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $X$ be a discrete random variable on a probability space $\struct {\Omega, \Sigma, \Pr}$.

Let $X$ have the negative binomial distribution (first form) with parameters $n$ and $p$ ($0 < p < 1$).


Then $X$ gives rise to a probability mass function.


Proof

By definition:

$\Img X = \set {0, 1, 2, \ldots}$
$\map \Pr {X = k} = \dbinom {n + k - 1} {n - 1} p^k \paren {1 - p}^n$


Then:

\(\ds \map \Pr \Omega\) \(=\) \(\ds \sum_{k \mathop \ge n} \binom {n + k - 1} {n - 1} p^k \paren {1 - p}^n\)
\(\ds \) \(=\) \(\ds \paren {1 - p}^n \sum_{k \mathop \ge n} \binom {n + k - 1} k p^k\) Symmetry Rule for Binomial Coefficients
\(\ds \) \(=\) \(\ds \paren {1 - p}^n \sum_{j \mathop \ge 0} \binom {-n} k p^k\) Negated Upper Index of Binomial Coefficient
\(\ds \) \(=\) \(\ds \paren {1 - p}^n p^{-n}\) Binomial Theorem
\(\ds \) \(=\) \(\ds 1\)


So $X$ satisfies $\map \Pr \Omega = 1$, and hence the result.

$\blacksquare$