Negative Part of Vertical Section of Function is Vertical Section of Negative Part

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $X$ and $Y$ be sets.

Let $f : X \times Y \to \overline \R$ be a function.

Let $x \in X$.


Then:

$\paren {f_x}^- = \paren {f^-}_x$

where:

$f_x$ denotes the $x$-vertical function of $f$
$f^-$ denotes the negative part of $f$.


Proof

Fix $x \in X$.

Then, we have:

\(\ds \map {\paren {f^-}_x} y\) \(=\) \(\ds \map {f^-} {x, y}\)
\(\ds \) \(=\) \(\ds -\min \set {0, \map f {x, y} }\) Definition of Negative Part
\(\ds \) \(=\) \(\ds -\min \set {0, \map {f_x} y}\) Definition of Vertical Section of Function
\(\ds \) \(=\) \(\ds \map {\paren {f_x}^-} y\) Definition of Negative Part

$\blacksquare$