Negative of Absolute Value/Corollary 3

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x \in \R$.

Let $y \in \R_{\ge 0}$.

Let $z \in \R$.


Then:

$\size {x - z} < y \iff z - y < x < z + y$


Proof

\(\ds \size {x - z}\) \(<\) \(\, \ds y \, \) \(\ds \)
\(\ds \leadstoandfrom \ \ \) \(\ds -y\) \(<\) \(\, \ds x - z \, \) \(\, \ds < \, \) \(\ds y\) Negative of Absolute Value: Corollary 1
\(\ds \leadstoandfrom \ \ \) \(\ds z - y\) \(<\) \(\, \ds x \, \) \(\, \ds < \, \) \(\ds z + y\) Real Number Ordering is Compatible with Addition

$\blacksquare$