Negative of Logarithm of x plus Root x squared minus a squared

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x \in \R: \size x > 1$.

Let $x > 1$.

Then:

$-\map \ln {x + \sqrt {x^2 - a^2} } = \map \ln {x - \sqrt {x^2 - a^2} } - \map \ln {a^2}$


Proof

First we note that if $x > 1$ then $x + \sqrt {x^2 - a^2} > 0$.

Hence $\map \ln {x + \sqrt {x^2 - a^2} }$ is defined.

Then we have:

\(\ds -\map \ln {x + \sqrt {x^2 - a^2} }\) \(=\) \(\ds \map \ln {\dfrac 1 {x + \sqrt {x^2 - a^2} } }\) Logarithm of Reciprocal
\(\ds \) \(=\) \(\ds \map \ln {\dfrac {x - \sqrt {x^2 - a^2} } {\paren {x + \sqrt {x^2 - a^2} } \paren {x - \sqrt {x^2 - a^2} } } }\) multiplying top and bottom by $x - \sqrt {x^2 - a^2}$
\(\ds \) \(=\) \(\ds \map \ln {\dfrac {x - \sqrt {x^2 - a^2} } {x^2 - \paren {x^2 - a^2} } }\) Difference of Two Squares
\(\ds \) \(=\) \(\ds \map \ln {\dfrac {x - \sqrt {x^2 - a^2} } {a^2} }\) simplifying
\(\ds \) \(=\) \(\ds \map \ln {x - \sqrt {x^2 - a^2} } - \map \ln {a^2}\) Difference of Logarithms

$\blacksquare$


Also see