Nicomachus's Theorem/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds 1^3\) \(=\) \(\ds 1\)
\(\ds 2^3\) \(=\) \(\ds 3 + 5\)
\(\ds 3^3\) \(=\) \(\ds 7 + 9 + 11\)
\(\ds 4^3\) \(=\) \(\ds 13 + 15 + 17 + 19\)
\(\ds \vdots\) \(\) \(\ds \)


In general:

$\forall n \in \N_{>0}: n^3 = \paren {n^2 - n + 1} + \paren {n^2 - n + 3} + \dotsb + \paren {n^2 + n - 1}$


In particular, the first term for $\paren {n + 1}^3$ is $2$ greater than the last term for $n^3$.


Proof

From the definition:

$\paren {n^2 - n + 1} + \paren {n^2 - n + 3} + \ldots + \paren {n^2 + n - 1}$

can be written:

$\paren {n^2 - n + 1} + \paren {n^2 - n + 3} + \ldots + \paren {n^2 - n + 2 n - 1}$

Writing this in sum notation:

\(\ds \) \(\) \(\ds \paren {n^2 - n + 1} + \paren {n^2 - n + 3} + \ldots + \paren {n^2 - n + 2 n - 1}\)
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 1}^n \paren {n^2 - n + 2 k - 1}\)
\(\ds \) \(=\) \(\ds n \paren {n^2 - n} + \sum_{k \mathop = 1}^n \paren {2 k - 1}\)
\(\ds \) \(=\) \(\ds n^3 - n^2 + n^2\) Odd Number Theorem
\(\ds \) \(=\) \(\ds n^3\)

$\blacksquare$


Source of Name

This entry was named for Nicomachus of Gerasa.