# Non-Trivial Group has Non-Trivial Cyclic Subgroup

## Theorem

Let $G$ be a group whose identity element is $e$.

Let $g \in G$.

If $g$ has infinite order, then $\gen g$ is an infinite cyclic group.

If $\order g = n$, then $\gen g$ is a cyclic group with $n$ elements.

Thus, every group which is non-trivial has at least one cyclic subgroup which is also non-trivial.

In the case that $G$ is itself cyclic, that cyclic subgroup may of course be itself.

## Proof

### Infinite Order

Suppose that $g$ has infinite order.

We have that $\gen g$ consists of all possible powers of $g$.

So $\gen g$ can contain a finite number of elements only if some of these were equal.

Then we would have:

$\exists i, j \in \Z, i < j: g^i = g^j$

and so:

$g^{j - i} = g^{i - i} = g^0 = e$

which would mean that $g$ was of finite order.

This contradiction leads to the conclusion that $\gen g$ must be an infinite cyclic group.

$\Box$

### Finite Order

If $\order g = n$, we have from Equal Powers of Finite Order Element that there are exactly $n$ different elements of $G$ of the form $g^i$.

Hence $\gen g$ is a cyclic group with $n$ elements.

$\blacksquare$