Nonexistence of Continuous Linear Transformations over Finite Dimensional Vector Space whose Commutator equals Identity

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {X, \norm {\, \cdot \,}}$ be a normed vector space.

Let $\map {CL} X := \map {CL} {X, X}$ be the space of continuous linear transformations.

Let $A, B \in \map {CL} {X, X}$ be continuous linear transformations.

Let $I$ be the identity operator.


Then there is no $A, B$ such that $A \circ B - B \circ A = I$

Proof

Aiming for a contradiction, suppose there is $A, B$ such that $A \circ B - B \circ A = I$.

Lemma

$\forall n \in \N_{> 0} : A \circ B^n - B^n \circ A = n B^{n - 1}$

where

$B^n = \underbrace{B \circ B \circ \ldots \circ B}_{n \text{ times} }$

and $B^0 = I$.

Proof

This will be a proof by mathematical induction.


Basis for the Induction

Let $n = 1$

Then:

\(\ds A \circ B^1 - B^1 \circ A\) \(=\) \(\ds 1 \cdot B^{1 - 1}\)
\(\ds \leadsto \ \ \) \(\ds A \circ B - B \circ A\) \(=\) \(\ds I\)


Induction Hypothesis

This is the induction hypothesis:

$A \circ B^n - B^n \circ A = n B^{n - 1}$

It is to be demonstrated that it follows that:

$A \circ B^{n + 1} - B^{n + 1} \circ A = \paren {n + 1} B^n$


Induction Step

\(\ds A \circ B^{n + 1} - B^{n + 1} \circ A\) \(=\) \(\ds A \circ B^n \circ B - B^n \circ B \circ A\)
\(\ds \) \(=\) \(\ds \paren {n B^{n - 1} + B^n \circ A} \circ B - B^n \circ B \circ A\)
\(\ds \) \(=\) \(\ds n B^n + B^n \circ A \circ B - B^n \circ B \circ A\)
\(\ds \) \(=\) \(\ds n B^n + B^n \circ \paren {A \circ B - B \circ A}\)
\(\ds \) \(=\) \(\ds n B^n + B^n \circ I\)
\(\ds \) \(=\) \(\ds n B^n + B^n\)
\(\ds \) \(=\) \(\ds \paren {n + 1} B^{\paren {n + 1} - 1}\)

$\Box$


Take the supremum operator norm of $A \circ B^n - B^n \circ A = n B^{n - 1}$:

\(\ds \norm {n \paren {B^{n - 1} } }\) \(=\) \(\ds n \norm {B^{n - 1} }\) Norm Axiom $\text N 2$: Positive Homogeneity
\(\ds \) \(=\) \(\ds \norm {A \circ B^{n - 1} \circ B - B \circ B^{n - 1} \circ A}\)
\(\ds \) \(\le\) \(\ds \norm {A \circ B^{n - 1} \circ B} + \norm {B \circ B^{n - 1} \circ A}\) Norm Axiom $\text N 3$: Triangle Inequality
\(\ds \) \(\le\) \(\ds 2 \norm A \norm B \norm {B^{n - 1} }\)

Lemma

$\forall n \in \N_{> 0} : B^{n - 1} \ne \mathbf 0$

Proof

Aiming for a contradiction, suppose $\exists n \in \N_{> 0} : B^{n - 1} = \mathbf 0$

For $n = 1$ we have $B^0 = I \ne \mathbf 0$.

Hence, $n \ne 1$.

Suppose:

$\exists n \in \N_{> 0} : B^{n - 1} \ne \mathbf 0$

If $B^n = \mathbf 0$ then:

\(\ds \mathbf 0\) \(=\) \(\ds A \circ \mathbf 0 - \mathbf 0 \circ A\)
\(\ds \) \(=\) \(\ds A \circ B^n - B^n \circ A\)
\(\ds \) \(=\) \(\ds n B^{n - 1}\)
\(\ds \) \(\ne\) \(\ds \mathbf 0\)

Altogether:

$\forall n \in \N_{> 0} : \paren {B^{n - 1} \ne \mathbf 0} \implies \paren {B^n \ne \mathbf 0}$

This is a contradiction.


$\Box$

Hence:

$\forall n \in \N_{> 0} : \norm {B^{n - 1} } > 0$.

Thus:

$\forall n \in \N_{> 0} : n \le 2 \norm A \norm B$

This holds only if $\norm A \norm B = \infty$.



However, the image of $\norm {\, \cdot \,}$ is a subset of $\R$:

$\Img {\norm {\, \cdot \,}} \subseteq \R$

and does not contain the infinity.

This is a contradiction.

$\blacksquare$


Sources