Properties of Norm on Division Ring/Norm of Integer

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {R, +, \circ}$ be a division ring with zero $0_R$ and unity $1_R$.

Let $\norm {\,\cdot\,}$ be a norm on $R$.


For all $n \in \N_{>0}$, let $n \cdot 1_R$ denote the sum of $1_R$ with itself $n$-times. That is:

$n \cdot 1_R = \underbrace {1_R + 1_R + \dots + 1_R}_{\text {$n$ times} }$

Then:

$\norm {n \cdot 1_R} \le n$.


Proof

Let $n \in \N_{>0}$.

Then:

\(\ds \norm {n \cdot 1_R}\) \(=\) \(\ds \norm {1_R + 1_R + \dots + 1_R}\)
\(\ds \) \(\le\) \(\ds \underbrace {\norm {1_R} + \norm {1_R} + \dots + \norm {1_R} }_{\text {$n$ times} }\) Norm Axiom $\text N 3$: Triangle Inequality
\(\ds \) \(=\) \(\ds \underbrace {1 + 1 + \dots + 1 }_{\text {$n$ times} }\) Norm of Unity
\(\ds \) \(=\) \(\ds n\)

$\blacksquare$


Sources