Normal Subgroup/Examples
Jump to navigation
Jump to search
Examples of Normal Subgroups
Normal Subgroups of Symmetric Group on $3$ Letters
Let $S_3$ denote the Symmetric Group on 3 Letters, whose Cayley table is given as:
- $\begin{array}{c|cccccc}\circ & e & (123) & (132) & (23) & (13) & (12) \\ \hline e & e & (123) & (132) & (23) & (13) & (12) \\ (123) & (123) & (132) & e & (13) & (12) & (23) \\ (132) & (132) & e & (123) & (12) & (23) & (13) \\ (23) & (23) & (12) & (13) & e & (132) & (123) \\ (13) & (13) & (23) & (12) & (123) & e & (132) \\ (12) & (12) & (13) & (23) & (132) & (123) & e \\ \end{array}$
Consider the subgroups of $S_3$:
The subsets of $S_3$ which form subgroups of $S_3$ are:
\(\ds \) | \(\) | \(\ds S_3\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \set e\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \set {e, \tuple {123}, \tuple {132} }\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \set {e, \tuple {12} }\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \set {e, \tuple {13} }\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \set {e, \tuple {23} }\) |
Of those, the normal subgroups in $S_3$ are:
- $S_3, \set e, \set {e, \tuple {123}, \tuple {132} }$