Normal to Circle passes through Center

From ProofWiki
Jump to navigation Jump to search


A normal $\NN$ to a circle $\CC$ passes through the center of $\CC$.


Let $\CC$ be positioned in a Cartesian plane with its center at the origin.

Let $\NN$ pass through the point $\tuple {x_1, y_1}$.

From Equation of Normal to Circle Centered at Origin, $\NN$ has the equation:

$y_1 x - x_1 y = 0$


$y = \dfrac {y_1} {x_1} x$

From the Equation of Straight Line in Plane: Slope-Intercept Form, this is the equation of a straight line passing through the origin.

As the geometry of a circle is unchanged by a change of coordinate axes, the result follows for a general circle in whatever frame.