Normed Division Ring Sequence Converges in Completion iff Sequence Represents Limit/Lemma 2
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Theorem
Let $\struct {R, \norm{\,\cdot\,}_R}$ be a normed division ring.
Let $\CC$ be the ring of Cauchy sequences over $R$
Let $\NN$ be the set of null sequences.
Let $Q = \CC / \NN$ where $\CC / \NN$ denotes a quotient ring.
Let $\norm {\, \cdot \,}_Q: Q \to \R_{\ge 0}$ be the norm on the quotient ring $Q$ defined by:
- $\ds \forall \sequence {x_n} + \NN: \norm {\sequence {x_n} + \NN }_Q = \lim_{n \mathop \to \infty} \norm{x_n}_R$
Let $\phi: R \to Q$ be the mapping from $R$ to the quotient ring $Q$ defined by:
- $\forall a \in R: \map \phi a = \tuple {a, a, a, \ldots} + \NN$
where $\tuple {a, a, a, \ldots} + \NN$ is the left coset in $Q$ that contains the constant sequence $\sequence {a, a, a, \ldots} $.
Let $\sequence{x_n}$ be a sequence in $R$.
Let $y$ be the left coset in $Q$ that contains $\sequence{x_n}$.
For each $n \in \N$:
- $\norm{\map \phi {x_n} - y}_Q = \ds \lim_{m \mathop \to \infty} \norm{x_n - x_m}_R$
Proof
Let $n \in \N$.
We have:
- $\tuple {x_n, x_n, x_n, \ldots} \in \map \phi {x_n}$
- $\sequence{x_m} \in y$
From Element of Group is in Unique Coset of Subgroup:
- $\tuple {x_n, x_n, x_n, \ldots} + \NN = \map \phi {x_n}$
- $\sequence{x_m} + \NN = y$
Then:
\(\ds \sequence{x_n - x_m}_{m \in \N} + \NN\) | \(=\) | \(\ds \paren{\tuple {x_n, x_n, x_n, \ldots} - \sequence{x_m}_{m \in \N} } + \NN\) | Difference Rule for Cauchy Sequences in Normed Division Ring | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren{\tuple {x_n, x_n, x_n, \ldots} + \NN} - \paren{\sequence{x_m}_{m \in \N} + \NN}\) | Definition of Quotient Ring | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \phi {x_n} - y\) |
From Element of Group is in its own Coset:
- $\sequence{x_n - x_m}_{m \in \N} \in \map \phi {x_n} - y$
By definition of induced norm:
- $\norm{\map \phi {x_n} - y}_Q = \ds \lim_{m \mathop \to \infty} \norm{x_n - x_m}_R$
$\blacksquare$