Nth Root of 1 plus x not greater than 1 plus x over n

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x \in \R_{>0}$ be a (strictly) positive real number.

Let $n \in \Z_{>0}$ be a (strictly) positive integer.


Then:

$\sqrt [n] {1 + x} \le 1 + \dfrac x n$


Proof

From Bernoulli's Inequality:

$\paren {1 + y}^n \ge 1 + n y$

which holds for:

$y \in \R$ where $y > -1$
$n \in \Z_{\ge 0}$

Thus it holds for $y \in \R_{> 0}$ and $n \in \Z_{> 0}$.

So:

\(\ds 1 + n y\) \(\le\) \(\ds \paren {1 + y}^n\)
\(\ds \leadsto \ \ \) \(\ds 1 + n \frac x n\) \(\le\) \(\ds \paren {1 + \frac x n}^n\) substituting $y = \dfrac x n$
\(\ds \leadsto \ \ \) \(\ds 1 + x\) \(\le\) \(\ds \paren {1 + \frac x n}^n\)
\(\ds \leadsto \ \ \) \(\ds \sqrt [n] {1 + x}\) \(\le\) \(\ds 1 + \dfrac x n\) Root is Strictly Increasing

$\blacksquare$


Sources