Null Sequences form Maximal Left and Right Ideal/Corollary 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {F, \norm {\, \cdot \,} }$ be a valued field.

Let $\CC$ be the ring of Cauchy sequences over $F$.

Let $\NN$ be the set of null sequences in $F$.

That is:

$\NN = \set {\sequence {x_n}: \ds \lim_{n \mathop \to \infty} x_n = 0}$


Then $\NN$ is a maximal ring ideal of $\CC$.


Proof

By Null Sequences form Maximal Left and Right Ideal then $\NN$ is a maximal left ideal of $\CC$.

A field is by definition a commutative ring.

In a commutative ring, a maximal left ideal is by definition a maximal ideal.

$\blacksquare$


Sources