Number Smaller than Lebesgue Number is also Lebesgue Number

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $M = \struct {A, d}$ be a metric space.

Let $\epsilon \in \R_{>0}$ be a Lebesgue number for $M$.

Let $\epsilon' \in \R_{>0}: \epsilon' < \epsilon$.


Then $\epsilon'$ is also a Lebesgue number for $M$.


Proof

By hypothesis, let $\epsilon \in \R_{>0}$ be a Lebesgue number for $M$.

Then by definition:

$\forall x \in A: \exists \map U x \in \UU: \map {B_\epsilon} x \subseteq \map U x$

where $\map {B_\epsilon} x$ is the open $\epsilon$-ball of $x$ in $M$.

Let $\epsilon' \in \R_{>0}: \epsilon' < \epsilon$.

Let $y \in \map {B_{\epsilon'} } x$.

\(\ds \map d {y, x}\) \(<\) \(\ds \epsilon'\) Definition of Open Ball of Metric Space
\(\ds \leadsto \ \ \) \(\ds \map d {y, x}\) \(<\) \(\ds \epsilon\) as $\epsilon' < \epsilon$
\(\ds \leadsto \ \ \) \(\ds y\) \(\in\) \(\ds \map {B_\epsilon} x\) Definition of Open Ball of Metric Space
\(\ds \leadsto \ \ \) \(\ds y\) \(\in\) \(\ds \map U x\) Definition of Subset: $\map {B_\epsilon} x \subseteq \map U x$

That is:

$\map {B_{\epsilon'} } x \subseteq \map U x$

The result follows by definition of Lebesgue number.

$\blacksquare$


Sources