Number of Digits to Represent Integer in Given Number Base

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n \in \Z_{>0}$ be a (strictly) positive integer.

Let $b \in \Z$ be an integer such that $b > 1$.

Let $d$ denote the number of digits of $n$ when represented in base $b$.


Then:

$d = \ceiling {\map {\log_b} {n + 1} }$

where $\ceiling {\, \cdot \,}$ denotes the ceiling function.


Proof

Let $n$ have $d$ digits.

Then:

\(\ds b^{d - 1}\) \(\le\) \(\, \ds n \, \) \(\, \ds < \, \) \(\ds b^d\) Basis Representation Theorem
\(\ds \leadsto \ \ \) \(\ds b^{d - 1}\) \(<\) \(\, \ds n + 1 \, \) \(\, \ds \le \, \) \(\ds b^d\)
\(\ds \leadsto \ \ \) \(\ds d - 1\) \(<\) \(\, \ds \map {\log_b} {n + 1} \, \) \(\, \ds \le \, \) \(\ds d\)
\(\ds \leadsto \ \ \) \(\ds \) \(\) \(\, \ds \ceiling {\map {\log_b} {n + 1} } \, \) \(\, \ds = \, \) \(\ds d\) Integer equals Ceiling iff Number between Integer and One Less

$\blacksquare$