Number which is Square and Cube Modulo 7
Jump to navigation
Jump to search
Theorem
Let $n \in \Z$ be an integer.
Let $n$ be both a square and a cube at the same time.
Then either:
- $n \equiv 0 \pmod 7$
or:
- $n \equiv 1 \pmod 7$
Proof 1
Let $n = r^2 = s^3$ for some $r, s \in \Z$.
Then:
- $n = \paren {m^2}^3 = \paren {m^3}^2 = m^6$
for some $m \in \Z$
There are $7$ cases to consider:
- $(0): \quad m \equiv 0 \pmod 7$: we have $m = 7 k$
- $(1): \quad m \equiv 1 \pmod 7$: we have $m = 7 k + 1$
- $(2): \quad m \equiv 2 \pmod 7$: we have $m = 7 k + 2$
- $(3): \quad m \equiv 3 \pmod 7$: we have $m = 7 k + 3$
- $(4): \quad m \equiv 4 \pmod 7$: we have $m = 7 k + 4$
- $(5): \quad m \equiv 5 \pmod 7$: we have $m = 7 k + 5$
- $(6): \quad m \equiv 6 \pmod 7$: we have $m = 7 k + 6$
Using Congruence of Powers throughout, we make use of:
- $x \equiv y \pmod 7 \implies x^j \equiv y^j \pmod 7$
for $j \in \Z_{>0}$.
First the easy cases:
\(\text {(0)}: \quad\) | \(\ds m\) | \(\equiv\) | \(\ds 0 \pmod 7\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds m^6\) | \(\equiv\) | \(\ds 0 \pmod 7\) |
\(\text {(1)}: \quad\) | \(\ds m\) | \(\equiv\) | \(\ds 1 \pmod 7\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds m^6\) | \(\equiv\) | \(\ds 1 \pmod 7\) |
It is sufficient to investigate the congruence modulo $7$ of the integers from $2$ to $6$.
We have:
\(\text {(2)}: \quad\) | \(\ds 2^3\) | \(\equiv\) | \(\ds 8 \pmod 7\) | |||||||||||
\(\ds \) | \(\equiv\) | \(\ds 1 \pmod 7\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds 2^6\) | \(\equiv\) | \(\ds 1 \pmod 7\) |
\(\text {(3)}: \quad\) | \(\ds 3^2\) | \(\equiv\) | \(\ds 9 \pmod 7\) | |||||||||||
\(\ds \) | \(\equiv\) | \(\ds 2 \pmod 7\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds 3^6 = \paren {3^2}^3\) | \(\equiv\) | \(\ds 1 \pmod 7\) | from $(2)$ |
\(\text {(4)}: \quad\) | \(\ds 4^2\) | \(\equiv\) | \(\ds 16 \pmod 7\) | |||||||||||
\(\ds \) | \(\equiv\) | \(\ds 2 \pmod 7\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds 4^6 = \paren {4^2}^3\) | \(\equiv\) | \(\ds 1 \pmod 7\) | from $(2)$ |
\(\text {(5)}: \quad\) | \(\ds 5^2\) | \(\equiv\) | \(\ds 25 \pmod 7\) | |||||||||||
\(\ds \) | \(\equiv\) | \(\ds 4 \pmod 7\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds 5^6 = \paren {4^2}^3\) | \(\equiv\) | \(\ds 2^3 = 8 \pmod 7\) | from $(4)$ | ||||||||||
\(\ds \) | \(\equiv\) | \(\ds 1 \pmod 7\) |
\(\text {(6)}: \quad\) | \(\ds 6^2\) | \(\equiv\) | \(\ds 36 \pmod 7\) | |||||||||||
\(\ds \) | \(\equiv\) | \(\ds 1 \pmod 7\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds 6^6 = \paren {6^2}^3\) | \(\equiv\) | \(\ds 1 \pmod 7\) |
Hence the result.
$\blacksquare$
Proof 2
Let $n = r^2 = s^3$ for some $r, s \in \Z$.
Then:
- $n = \paren {m^2}^3 = \paren {m^3}^2 = m^6$
for some $m \in \Z$
For $m \equiv 0 \pmod 7$:
\(\ds m\) | \(\equiv\) | \(\ds 0 \pmod 7\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds m^6\) | \(\equiv\) | \(\ds 0 \pmod 7\) | Congruence of Powers | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds n\) | \(\equiv\) | \(\ds 0 \pmod 7\) |
From Fermat's Little Theorem, we have our prime number $p = 7$.
We also have our $m \in \Z_{>0}$ such that $7$ is not a divisor of $m$.
Then:
\(\ds m^{p - 1}\) | \(\equiv\) | \(\ds 1 \pmod p\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds m^{7 - 1}\) | \(\equiv\) | \(\ds 1 \pmod 7\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds m^6\) | \(\equiv\) | \(\ds 1 \pmod 7\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds n\) | \(\equiv\) | \(\ds 1 \pmod 7\) |
Hence the result.
$\blacksquare$
Sources
- 1980: David M. Burton: Elementary Number Theory (revised ed.) ... (previous) ... (next): Chapter $2$: Divisibility Theory in the Integers: $2.1$ The Division Algorithm: Problems $2.1$: $5$