Numbers Expressed as Sums of Binomial Coefficients

From ProofWiki
Jump to navigation Jump to search

Definition

Let $n \in \Z_{> 0}$ be a (strictly) positive integer.


Then for all $k \in \Z_{> 0}$, it is possible to express $k$ uniquely in the form:

\(\ds k\) \(=\) \(\ds \sum_{j \mathop = 1}^n \dbinom {k_j} j\)
\(\ds \) \(=\) \(\ds \dbinom {k_1} 1 + \dbinom {k_2} 2 + \cdots + \dbinom {k_n} n\)

such that $0 \le k_1 < k_2 < \cdots < k_n$.


Proof

Existence of Representation

Proof by induction:

For all $k \in \Z_{\ge 0}$, let $\map P k$ be the proposition that it is possible to express $k$ in the form:

$\ds k = \sum_{j \mathop = 1}^n \dbinom {k_j} j$

such that $0 \le k_1 < k_2 < \cdots < k_n$.


Basis for the Induction

$\map P 0$ is true, as $\ds 0 = \sum_{j \mathop = 1}^n \dbinom {j - 1} j$.

This is our basis for the induction.


Induction Hypothesis

Now we need to show that, if $\map P m$ is true, where $r \ge 2$, then it logically follows that $\map P {m + 1}$ is true.


So this is our induction hypothesis:

$m$ can be expressed in the form:

$\ds m = \sum_{j \mathop = 1}^n \dbinom {m_j} j$

where $0 \le m_1 < m_2 < \cdots < m_n$.


Then we need to show:

$m + 1$ can be expressed in the form:

$\ds m = \sum_{j \mathop = 1}^n \dbinom {k_j} j$

where $0 \le k_1 < k_2 < \cdots < k_n$.


Induction Step

This is our induction step:

Suppose the first $c$ $m_j$ are consecutive, that is:

$\forall \, j \in \N: 1 \le j < c: m_{j + 1} - m_j = 1$ and $m_{c + 1} - m_c > 1$

Then:

\(\ds m + 1\) \(=\) \(\ds \sum_{j \mathop = 1}^n \dbinom {m_j} j + 1\) from the induction hypothesis
\(\ds \) \(=\) \(\ds \sum_{j \mathop = c + 1}^n \dbinom {m_j} j + \sum_{j \mathop = 1}^c \dbinom {m_j} j + 1\)
\(\ds \) \(=\) \(\ds \sum_{j \mathop = c + 1}^n \dbinom {m_j} j + \sum_{j \mathop = 1}^c \dbinom {m_1 + j - 1} j + \dbinom {m_1 + 0 - 1} 0\) Binomial Coefficient with Zero
\(\ds \) \(=\) \(\ds \sum_{j \mathop = c + 1}^n \dbinom {m_j} j + \dbinom {m_1 + c} c\) Sum of r+k Choose k up to n
\(\ds \) \(=\) \(\ds \sum_{j \mathop = c + 1}^n \dbinom {m_j} j + \dbinom {m_c - 1} c\)
\(\ds \) \(=\) \(\ds \sum_{j \mathop = c + 1}^n \dbinom {m_j} j + \dbinom {m_c - 1} c + \sum_{j = 1}^{c - 1} \dbinom {j - 1} j\)

Since $0 \le m_1 < m_2 < \cdots < m_n$, we must have $m_j \ge j - 1$ for each $j \le n$.

Hence $0 \le 0 < 1 < \cdots < c - 2 < m_c - 1 < m_{c + 1} < \cdots < m_n$.

Thus the expression above satisfy the conditions.


So $\map P m \implies \map P {m + 1}$ and the result follows by the Principle of Mathematical Induction.


Therefore:

$\ds \forall n \in \Z_{\ge 0}: \sum_{k \mathop = 0}^n \binom {r + k} k = \binom {r + n + 1} n$

$\Box$


Uniqueness of Representation

Suppose $k$ can be expressed in the form:

$\ds k = \sum_{j \mathop = 1}^n \dbinom {k_j} j = \sum_{j \mathop = 1}^n \dbinom {m_j} j$

where $0 \le k_1 < k_2 < \cdots < k_n$ and $0 \le m_1 < m_2 < \cdots < m_n$.

Aiming for a contradiction, suppose $k_i$ and $m_i$ are not all equal.

Let $c$ be the largest integer such that $k_c \ne m_c$.

Without loss of generality assume $k_c < m_c$.

Then:

\(\ds k\) \(=\) \(\ds \sum_{j \mathop = 1}^n \dbinom {k_j} j\)
\(\ds \) \(=\) \(\ds \sum_{j \mathop = c + 1}^n \dbinom {m_j} j + \sum_{j \mathop = 1}^c \dbinom {k_j} j\)
\(\ds \) \(\le\) \(\ds \sum_{j \mathop = c + 1}^n \dbinom {m_j} j + \sum_{j \mathop = 1}^c \dbinom {k_c - c + j} j\) $0 \le k_1 < k_2 < \cdots < k_n$
\(\ds \) \(=\) \(\ds \sum_{j \mathop = c + 1}^n \dbinom {m_j} j + \dbinom {k_c - c + c + 1} c - \dbinom {k_c - c} 0\) Sum of r+k Choose k up to n
\(\ds \) \(\le\) \(\ds \sum_{j \mathop = c + 1}^n \dbinom {m_j} j + \dbinom {m_c} c - 1\) $k_c + 1 \le m_c$
\(\ds \) \(<\) \(\ds \sum_{j \mathop = c + 1}^n \dbinom {m_j} j + \dbinom {m_c} c\)
\(\ds \) \(\le\) \(\ds \sum_{j \mathop = 1}^n \dbinom {m_j} j\) $\dbinom {m_j} j \ge 0$
\(\ds \) \(=\) \(\ds k\)

which is a contradiction.


Thus the representation is unique.

$\blacksquare$


Examples

Number base $3$

When $n = 3$ we have:

\(\ds 0\) \(=\) \(\, \ds \binom 0 1 + \binom 1 2 + \binom 2 3 \, \) \(\, \ds = \, \) \(\ds 0 + 0 + 0\) $(012)$
\(\ds 1\) \(=\) \(\, \ds \binom 0 1 + \binom 1 2 + \binom 3 3 \, \) \(\, \ds = \, \) \(\ds 0 + 0 + 1\) $(013)$
\(\ds 2\) \(=\) \(\, \ds \binom 0 1 + \binom 2 2 + \binom 3 3 \, \) \(\, \ds = \, \) \(\ds 0 + 1 + 1\) $(023)$
\(\ds 3\) \(=\) \(\, \ds \binom 1 1 + \binom 2 2 + \binom 3 3 \, \) \(\, \ds = \, \) \(\ds 1 + 1 + 1\) $(123)$
\(\ds 4\) \(=\) \(\, \ds \binom 0 1 + \binom 1 2 + \binom 4 3 \, \) \(\, \ds = \, \) \(\ds 0 + 0 + 4\) $(014)$
\(\ds 5\) \(=\) \(\, \ds \binom 0 1 + \binom 2 2 + \binom 4 3 \, \) \(\, \ds = \, \) \(\ds 0 + 1 + 4\) $(024)$
\(\ds 6\) \(=\) \(\, \ds \binom 1 1 + \binom 2 2 + \binom 4 3 \, \) \(\, \ds = \, \) \(\ds 1 + 1 + 4\) $(124)$
\(\ds 7\) \(=\) \(\, \ds \binom 0 1 + \binom 3 2 + \binom 4 3 \, \) \(\, \ds = \, \) \(\ds 0 + 3 + 4\) $(034)$
\(\ds 8\) \(=\) \(\, \ds \binom 1 1 + \binom 3 2 + \binom 4 3 \, \) \(\, \ds = \, \) \(\ds 1 + 3 + 4\) $(134)$
\(\ds 9\) \(=\) \(\, \ds \binom 2 1 + \binom 3 2 + \binom 4 3 \, \) \(\, \ds = \, \) \(\ds 2 + 3 + 4\) $(234)$
\(\ds 10\) \(=\) \(\, \ds \binom 0 1 + \binom 1 2 + \binom 5 3 \, \) \(\, \ds = \, \) \(\ds 0 + 0 + 10\) $(015)$
\(\ds 11\) \(=\) \(\, \ds \binom 0 1 + \binom 2 2 + \binom 5 3 \, \) \(\, \ds = \, \) \(\ds 0 + 1 + 10\) $(025)$
\(\ds 12\) \(=\) \(\, \ds \binom 1 1 + \binom 2 2 + \binom 5 3 \, \) \(\, \ds = \, \) \(\ds 1 + 1 + 10\) $(125)$
\(\ds 13\) \(=\) \(\, \ds \binom 0 1 + \binom 3 2 + \binom 5 3 \, \) \(\, \ds = \, \) \(\ds 0 + 3 + 10\) $(035)$
\(\ds 14\) \(=\) \(\, \ds \binom 1 1 + \binom 3 2 + \binom 5 3 \, \) \(\, \ds = \, \) \(\ds 1 + 3 + 10\) $(135)$
\(\ds 15\) \(=\) \(\, \ds \binom 2 1 + \binom 3 2 + \binom 5 3 \, \) \(\, \ds = \, \) \(\ds 2 + 3 + 10\) $(235)$
\(\ds 16\) \(=\) \(\, \ds \binom 0 1 + \binom 4 2 + \binom 5 3 \, \) \(\, \ds = \, \) \(\ds 0 + 6 + 10\) $(045)$
\(\ds 17\) \(=\) \(\, \ds \binom 1 1 + \binom 4 2 + \binom 5 3 \, \) \(\, \ds = \, \) \(\ds 1 + 6 + 10\) $(145)$
\(\ds 18\) \(=\) \(\, \ds \binom 2 1 + \binom 4 2 + \binom 5 3 \, \) \(\, \ds = \, \) \(\ds 2 + 6 + 10\) $(245)$
\(\ds 19\) \(=\) \(\, \ds \binom 3 1 + \binom 4 2 + \binom 5 3 \, \) \(\, \ds = \, \) \(\ds 3 + 6 + 10\) $(345)$
\(\ds 20\) \(=\) \(\, \ds \binom 0 1 + \binom 1 2 + \binom 6 3 \, \) \(\, \ds = \, \) \(\ds 0 + 0 + 20\) $(016)$


Number base $4$

When $n = 4$ we have:

\(\ds 0\) \(=\) \(\, \ds \binom 0 1 + \binom 1 2 + \binom 2 3 + \binom 3 4 \, \) \(\, \ds = \, \) \(\ds 0 + 0 + 0 + 0\) $(0123)$
\(\ds 1\) \(=\) \(\, \ds \binom 0 1 + \binom 1 2 + \binom 2 3 + \binom 4 4 \, \) \(\, \ds = \, \) \(\ds 0 + 0 + 0 + 1\) $(0124)$
\(\ds 2\) \(=\) \(\, \ds \binom 0 1 + \binom 1 2 + \binom 3 3 + \binom 4 4 \, \) \(\, \ds = \, \) \(\ds 0 + 0 + 1 + 1\) $(0134)$
\(\ds 3\) \(=\) \(\, \ds \binom 0 1 + \binom 2 2 + \binom 3 3 + \binom 4 4 \, \) \(\, \ds = \, \) \(\ds 0 + 1 + 1 + 1\) $(0234)$
\(\ds 4\) \(=\) \(\, \ds \binom 1 1 + \binom 2 2 + \binom 3 3 + \binom 4 4 \, \) \(\, \ds = \, \) \(\ds 1 + 1 + 1 + 1\) $(1234)$
\(\ds 5\) \(=\) \(\, \ds \binom 0 1 + \binom 1 2 + \binom 2 3 + \binom 5 4 \, \) \(\, \ds = \, \) \(\ds 0 + 0 + 0 + 5\) $(0125)$
\(\ds 6\) \(=\) \(\, \ds \binom 0 1 + \binom 1 2 + \binom 3 3 + \binom 5 4 \, \) \(\, \ds = \, \) \(\ds 0 + 0 + 1 + 5\) $(0135)$
\(\ds 7\) \(=\) \(\, \ds \binom 0 1 + \binom 2 2 + \binom 3 3 + \binom 5 4 \, \) \(\, \ds = \, \) \(\ds 0 + 1 + 1 + 5\) $(0235)$
\(\ds 8\) \(=\) \(\, \ds \binom 1 1 + \binom 2 2 + \binom 3 3 + \binom 5 4 \, \) \(\, \ds = \, \) \(\ds 1 + 1 + 1 + 5\) $(1235)$
\(\ds 9\) \(=\) \(\, \ds \binom 0 1 + \binom 1 2 + \binom 4 3 + \binom 5 4 \, \) \(\, \ds = \, \) \(\ds 0 + 0 + 4 + 5\) $(0145)$
\(\ds 10\) \(=\) \(\, \ds \binom 0 1 + \binom 2 2 + \binom 4 3 + \binom 5 4 \, \) \(\, \ds = \, \) \(\ds 0 + 1 + 4 + 5\) $(0245)$


Also see


Sources