Numbers between which exists one Mean Proportional are Similar Plane

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a, b \in \Z$ such that the geometric mean is an integer.

Then $a$ and $b$ are similar plane numbers.


In the words of Euclid:

If one mean proportional number fall between two numbers, the numbers will be similar plane numbers.

(The Elements: Book $\text{VIII}$: Proposition $20$)


Proof

Let the geometric mean of $a$ and $b$ be an integer $m$.

Then, in the language of Euclid, $m$ is a mean proportional of $a$ and $b$.

Thus:

$\left({a, m, b}\right)$

is a geometric sequence.

From Form of Geometric Sequence of Integers:

$\exists k, p, q \in \Z: a = k p^2, b = k q^2$

So $a$ and $b$ are plane numbers whose sides are:

$k p$ and $p$

and

$k q$ and $q$

respectively.

Then:

$\dfrac {k p} {k q} = \dfrac p q$

demonstrating that $a$ and $b$ are similar plane numbers by definition.

$\blacksquare$


Historical Note

This proof is Proposition $20$ of Book $\text{VIII}$ of Euclid's The Elements.


Sources