Numbers such that Divisor Count divides Phi divides Divisor Sum/Examples

From ProofWiki
Jump to navigation Jump to search

Examples of Numbers such that Divisor Count divides Phi divides Divisor Sum

1

\(\ds \map {\sigma_0} 1\) \(=\) \(\, \ds 1 \, \) \(\ds \) $\sigma_0$ of $1$
\(\ds \map \phi 1\) \(=\) \(\, \ds 1 \, \) \(\ds \) $\phi$ of $1$
\(\ds \map {\sigma_1} 1\) \(=\) \(\, \ds 1 \, \) \(\ds \) $\sigma_1$ of $1$

$\blacksquare$


3

\(\ds \map {\sigma_0} 3\) \(=\) \(\, \ds 2 \, \) \(\ds \) $\sigma_0$ of $3$
\(\ds \map \phi 3\) \(=\) \(\, \ds 2 \, \) \(\ds \) $\phi$ of $3$
\(\ds \map {\sigma_1} 3\) \(=\) \(\, \ds 4 \, \) \(\, \ds = \, \) \(\ds 2 \times 2\) $\sigma_1$ of $3$

$\blacksquare$


15

\(\ds \map {\sigma_0} {15}\) \(=\) \(\, \ds 4 \, \) \(\ds \) $\sigma_0$ of $15$
\(\ds \map \phi {15}\) \(=\) \(\, \ds 8 \, \) \(\, \ds = \, \) \(\ds 2 \times 4\) $\phi$ of $15$
\(\ds \map {\sigma_1} {15}\) \(=\) \(\, \ds 24 \, \) \(\, \ds = \, \) \(\ds 3 \times 8\) $\sigma_1$ of $15$

$\blacksquare$


30

\(\ds \map {\sigma_0} {30}\) \(=\) \(\, \ds 8 \, \) \(\ds \) $\sigma_0$ of $30$
\(\ds \map \phi {30}\) \(=\) \(\, \ds 8 \, \) \(\ds \) $\phi$ of $30$
\(\ds \map {\sigma_1} {30}\) \(=\) \(\, \ds 72 \, \) \(\, \ds = \, \) \(\ds 9 \times 8\) $\sigma_1$ of $30$

$\blacksquare$


35

\(\ds \map {\sigma_0} {35}\) \(=\) \(\, \ds 4 \, \) \(\ds \) $\sigma_0$ of $35$
\(\ds \map \phi {35}\) \(=\) \(\, \ds 24 \, \) \(\, \ds = \, \) \(\ds 6 \times 4\) $\phi$ of $35$
\(\ds \map {\sigma_1} {35}\) \(=\) \(\, \ds 48 \, \) \(\, \ds = \, \) \(\ds 2 \times 24\) $\sigma_1$ of $35$

$\blacksquare$


56

\(\ds \map {\sigma_0} {56}\) \(=\) \(\, \ds 8 \, \) \(\ds \) $\sigma_0$ of $56$
\(\ds \map \phi {56}\) \(=\) \(\, \ds 24 \, \) \(\, \ds = \, \) \(\ds 3 \times 8\) $\phi$ of $56$
\(\ds \map {\sigma_1} {56}\) \(=\) \(\, \ds 120 \, \) \(\, \ds = \, \) \(\ds 5 \times 24\) $\sigma_1$ of $56$

$\blacksquare$


70

\(\ds \map {\sigma_0} {70}\) \(=\) \(\, \ds 8 \, \) \(\ds \) $\sigma_0$ of $70$
\(\ds \map \phi {70}\) \(=\) \(\, \ds 24 \, \) \(\, \ds = \, \) \(\ds 3 \times 8\) $\phi$ of $70$
\(\ds \map {\sigma_1} {70}\) \(=\) \(\, \ds 144 \, \) \(\, \ds = \, \) \(\ds 6 \times 24\) $\sigma_1$ of $70$

$\blacksquare$


78

\(\ds \map {\sigma_0} {78}\) \(=\) \(\, \ds 8 \, \) \(\ds \) $\sigma_0$ of $78$
\(\ds \map \phi {78}\) \(=\) \(\, \ds 24 \, \) \(\, \ds = \, \) \(\ds 3 \times 8\) $\phi$ of $78$
\(\ds \map {\sigma_1} {78}\) \(=\) \(\, \ds 168 \, \) \(\, \ds = \, \) \(\ds 7 \times 24\) $\sigma_1$ of $78$

$\blacksquare$


105

\(\ds \map {\sigma_0} {105}\) \(=\) \(\, \ds 8 \, \) \(\ds \) $\sigma_0$ of $105$
\(\ds \map \phi {105}\) \(=\) \(\, \ds 48 \, \) \(\, \ds = \, \) \(\ds 6 \times 8\) $\phi$ of $105$
\(\ds \map {\sigma_1} {105}\) \(=\) \(\, \ds 192 \, \) \(\, \ds = \, \) \(\ds 4 \times 48\) $\sigma_1$ of $105$

$\blacksquare$


140

\(\ds \map {\sigma_0} {140}\) \(=\) \(\, \ds 12 \, \) \(\ds \) $\sigma_0$ of $140$
\(\ds \map \phi {140}\) \(=\) \(\, \ds 48 \, \) \(\, \ds = \, \) \(\ds 4 \times 12\) $\phi$ of $140$
\(\ds \map {\sigma_1} {140}\) \(=\) \(\, \ds 336 \, \) \(\, \ds = \, \) \(\ds 7 \times 48\) $\sigma_1$ of $140$

$\blacksquare$


168

\(\ds \map {\sigma_0} {168}\) \(=\) \(\, \ds 16 \, \) \(\ds \) $\sigma_0$ of $168$
\(\ds \map \phi {168}\) \(=\) \(\, \ds 48 \, \) \(\, \ds = \, \) \(\ds 3 \times 16\) $\phi$ of $168$
\(\ds \map {\sigma_1} {168}\) \(=\) \(\, \ds 480 \, \) \(\, \ds = \, \) \(\ds 10 \times 48\) $\sigma_1$ of $168$

$\blacksquare$


190

\(\ds \map {\sigma_0} {190}\) \(=\) \(\, \ds 8 \, \) \(\ds \) $\sigma_0$ of $190$
\(\ds \map \phi {190}\) \(=\) \(\, \ds 72 \, \) \(\, \ds = \, \) \(\ds 9 \times 8\) $\phi$ of $190$
\(\ds \map {\sigma_1} {190}\) \(=\) \(\, \ds 360 \, \) \(\, \ds = \, \) \(\ds 5 \times 72\) $\sigma_1$ of $190$

$\blacksquare$


210

\(\ds \map {\sigma_0} {210}\) \(=\) \(\, \ds 16 \, \) \(\ds \) $\sigma_0$ of $210$
\(\ds \map \phi {210}\) \(=\) \(\, \ds 48 \, \) \(\, \ds = \, \) \(\ds 3 \times 16\) $\phi$ of $210$
\(\ds \map {\sigma_1} {210}\) \(=\) \(\, \ds 576 \, \) \(\, \ds = \, \) \(\ds 12 \times 48\) $\sigma_1$ of $210$

$\blacksquare$


248

\(\ds \map {\sigma_0} {248}\) \(=\) \(\, \ds 8 \, \) \(\ds \) $\sigma_0$ of $248$
\(\ds \map \phi {248}\) \(=\) \(\, \ds 120 \, \) \(\, \ds = \, \) \(\ds 15 \times 8\) $\phi$ of $248$
\(\ds \map {\sigma_1} {248}\) \(=\) \(\, \ds 480 \, \) \(\, \ds = \, \) \(\ds 4 \times 120\) $\sigma_1$ of $248$

$\blacksquare$


264

\(\ds \map {\sigma_0} {264}\) \(=\) \(\, \ds 16 \, \) \(\ds \) $\sigma_0$ of $264$
\(\ds \map \phi {264}\) \(=\) \(\, \ds 80 \, \) \(\, \ds = \, \) \(\ds 5 \times 16\) $\phi$ of $264$
\(\ds \map {\sigma_1} {264}\) \(=\) \(\, \ds 720 \, \) \(\, \ds = \, \) \(\ds 9 \times 80\) $\sigma_1$ of $264$

$\blacksquare$


357

\(\ds \map {\sigma_0} {357}\) \(=\) \(\, \ds 8 \, \) \(\ds \) $\sigma_0$ of $357$
\(\ds \map \phi {357}\) \(=\) \(\, \ds 192 \, \) \(\, \ds = \, \) \(\ds 24 \times 8\) $\phi$ of $357$
\(\ds \map {\sigma_1} {357}\) \(=\) \(\, \ds 576 \, \) \(\, \ds = \, \) \(\ds 3 \times 192\) $\sigma_1$ of $357$

$\blacksquare$


420

\(\ds \map {\sigma_0} {420}\) \(=\) \(\, \ds 24 \, \) \(\ds \) $\sigma_0$ of $420$
\(\ds \map \phi {420}\) \(=\) \(\, \ds 96 \, \) \(\, \ds = \, \) \(\ds 4 \times 24\) $\phi$ of $420$
\(\ds \map {\sigma_1} {420}\) \(=\) \(\, \ds 1344 \, \) \(\, \ds = \, \) \(\ds 14 \times 96\) $\sigma_1$ of $420$

$\blacksquare$


570

\(\ds \map {\sigma_0} {570}\) \(=\) \(\, \ds 16 \, \) \(\ds \) $\sigma_0$ of $570$
\(\ds \map \phi {570}\) \(=\) \(\, \ds 144 \, \) \(\, \ds = \, \) \(\ds 9 \times 16\) $\phi$ of $570$
\(\ds \map {\sigma_1} {570}\) \(=\) \(\, \ds 1440 \, \) \(\, \ds = \, \) \(\ds 10 \times 144\) $\sigma_1$ of $570$

$\blacksquare$


616

\(\ds \map {\sigma_0} {616}\) \(=\) \(\, \ds 16 \, \) \(\ds \) $\sigma_0$ of $616$
\(\ds \map \phi {616}\) \(=\) \(\, \ds 240 \, \) \(\, \ds = \, \) \(\ds 15 \times 16\) $\phi$ of $616$
\(\ds \map {\sigma_1} {616}\) \(=\) \(\, \ds 1440 \, \) \(\, \ds = \, \) \(\ds 6 \times 240\) $\sigma_1$ of $616$

$\blacksquare$


630

\(\ds \map {\sigma_0} {630}\) \(=\) \(\, \ds 24 \, \) \(\ds \) $\sigma_0$ of $630$
\(\ds \map \phi {630}\) \(=\) \(\, \ds 144 \, \) \(\, \ds = \, \) \(\ds 6 \times 24\) $\phi$ of $630$
\(\ds \map {\sigma_1} {630}\) \(=\) \(\, \ds 1872 \, \) \(\, \ds = \, \) \(\ds 13 \times 144\) $\sigma_1$ of $630$

$\blacksquare$


Sources