Numbers such that Divisor Count divides Phi divides Divisor Sum/Examples/15

From ProofWiki
Jump to navigation Jump to search

Examples of Numbers such that Divisor Count divides Phi divides Divisor Sum

The number $15$ has the property that:

$\map {\sigma_0} {15} \divides \map \phi {15} \divides \map {\sigma_1} {15}$

where:

$\divides$ denotes divisibility
$\sigma_0$ denotes the divisor count function
$\phi$ denotes the Euler $\phi$ (phi) function
$\sigma_1$ denotes the divisor sum function.


Proof

\(\ds \map {\sigma_0} {15}\) \(=\) \(\, \ds 4 \, \) \(\ds \) $\sigma_0$ of $15$
\(\ds \map \phi {15}\) \(=\) \(\, \ds 8 \, \) \(\, \ds = \, \) \(\ds 2 \times 4\) $\phi$ of $15$
\(\ds \map {\sigma_1} {15}\) \(=\) \(\, \ds 24 \, \) \(\, \ds = \, \) \(\ds 3 \times 8\) $\sigma_1$ of $15$

$\blacksquare$