Numbers such that Divisor Count divides Phi divides Divisor Sum/Examples/78

From ProofWiki
Jump to navigation Jump to search

Examples of Numbers such that Divisor Count divides Phi divides Divisor Sum

The number $78$ has the property that:

$\map {\sigma_0} {78} \divides \map \phi {78} \divides \map {\sigma_1} {78}$

where:

$\divides$ denotes divisibility
$\sigma_0$ denotes the divisor count function
$\phi$ denotes the Euler $\phi$ (phi) function
$\sigma_1$ denotes the divisor sum function.


Proof

\(\ds \map {\sigma_0} {78}\) \(=\) \(\, \ds 8 \, \) \(\ds \) $\sigma_0$ of $78$
\(\ds \map \phi {78}\) \(=\) \(\, \ds 24 \, \) \(\, \ds = \, \) \(\ds 3 \times 8\) $\phi$ of $78$
\(\ds \map {\sigma_1} {78}\) \(=\) \(\, \ds 168 \, \) \(\, \ds = \, \) \(\ds 7 \times 24\) $\sigma_1$ of $78$

$\blacksquare$