Numbers whose Cube equals Sum of Sequence of that many Squares/Examples/2161

From ProofWiki
Jump to navigation Jump to search

Example of Numbers whose Cube equals Sum of Sequence of that many Squares

$\ds 2161^3 = \sum_{k \mathop = 1}^{2161} \paren {988 + k}^2$


Proof

From Numbers whose Cube equals Sum of Sequence of that many Squares:

$\ds m^3 = \sum_{k \mathop = 1}^m \paren {n + k}^2$

for $m = 2161$ and for $n$ given by:

$n = \dfrac {m + 1} 2 \pm \dfrac 1 6 \sqrt {33 m^2 + 3}$


So in this instance:

\(\ds n\) \(=\) \(\ds -\dfrac {2161 + 1} 2 \pm \frac 1 6 \sqrt {33 \times 2161^2 + 3}\)
\(\ds \) \(=\) \(\ds -1081 \pm \frac 1 6 \sqrt {33 \times 4 \, 669 \, 921 + 3}\)
\(\ds \) \(=\) \(\ds -1081 \pm \frac 1 6 \sqrt {154 \, 107 \, 396}\)
\(\ds \) \(=\) \(\ds -1081 \pm \frac {12 \, 414} 6\)
\(\ds \) \(=\) \(\ds -1081 \pm 2069\)


This gives:

$n = 988, n = -3150$

which leads to the two solutions:

\(\ds 2161^3\) \(=\) \(\ds 989^2 + 990^2 + \cdots + 3149^2\)
\(\ds \) \(=\) \(\ds \paren {-3149}^2 + \paren {-3148}^2 + \cdots + \paren {-989}^2\)

$\blacksquare$


Sources