Odd Numbers Not Expressible as Sum of 4 Distinct Non-Zero Coprime Squares
Theorem
The largest odd positive integer that cannot be expressed as the sum of exactly $4$ distinct non-zero square numbers with greatest common divisor $1$ is $157$.
The full sequence of such odd positive integers which cannot be so expressed is:
- $1, \ldots, 37, 41, 43, 45, 47, 49, 53, 55, 59, 61, 67, 69, 73, 77, 83, 89, 97, 101, 103, 115, 157$
where the sequence contains all odd integers between $1$ and $37$.
This sequence appears not to be documented on the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).
Proof
The statement of the result was taken from the paper cited below by Paul T. Bateman and others:
- The largest odd integer not expressible as a sum of $4$ distinct non-zero squares with greatest common divisor $1$ is $157$.
By a brute force exercise, we assemble all the sets of $4$ distinct non-zero integers and calculate the sum of their squares such that those sums are less than $157$.
It is noted in passing that all such sets have a greatest common divisor of $1$.
Thus we have:
\(\ds 39\) | \(=\) | \(\ds 1 + 4 + 9 + 25\) | \(\ds = 1^2 + 2^2 + 3^2 + 5^2\) | |||||||||||
\(\ds 51\) | \(=\) | \(\ds 1 + 9 + 16 + 25\) | \(\ds = 1^2 + 3^2 + 4^2 + 5^2\) | |||||||||||
\(\ds 57\) | \(=\) | \(\ds 1 + 4 + 16 + 36\) | \(\ds = 1^2 + 2^2 + 4^2 + 6^2\) | |||||||||||
\(\ds 63\) | \(=\) | \(\ds 1 + 4 + 9 + 49\) | \(\ds = 1^2 + 2^2 + 3^2 + 7^2\) | |||||||||||
\(\ds 65\) | \(=\) | \(\ds 4 + 9 + 16 + 36\) | \(\ds = 2^2 + 3^2 + 4^2 + 6^2\) | |||||||||||
\(\ds 71\) | \(=\) | \(\ds 1 + 9 + 25 + 36\) | \(\ds = 1^2 + 3^2 + 5^2 + 6^2\) | |||||||||||
\(\ds 75\) | \(=\) | \(\ds 1 + 9 + 16 + 49\) | \(\ds = 1^2 + 3^2 + 4^2 + 7^2\) | |||||||||||
\(\ds 79\) | \(=\) | \(\ds 1 + 2 + 25 + 49\) | \(\ds = 1^2 + 2^2 + 5^2 + 7^2\) | |||||||||||
\(\ds 81\) | \(=\) | \(\ds 4 + 16 + 25 + 36\) | \(\ds = 2^2 + 4^2 + 5^2 + 6^2\) | |||||||||||
\(\ds 85\) | \(=\) | \(\ds 1 + 4 + 16 + 64\) | \(\ds = 1^2 + 2^2 + 4^2 + 8^2\) | |||||||||||
\(\ds 87\) | \(=\) | \(\ds 4 + 9 + 25 + 49\) | \(\ds = 2^2 + 3^2 + 5^2 + 7^2\) | |||||||||||
\(\ds 91\) | \(=\) | \(\ds 1 + 16 + 25 + 49\) | \(\ds = 1^2 + 4^2 + 5^2 + 7^2\) | |||||||||||
\(\ds 93\) | \(=\) | \(\ds 4 + 9 + 16 + 64\) | \(\ds = 2^2 + 3^2 + 4^2 + 8^2\) | |||||||||||
\(\ds 95\) | \(=\) | \(\ds 1 + 9 + 36 + 49\) | \(\ds = 1^2 + 3^2 + 6^2 + 7^2\) | |||||||||||
\(\ds 99\) | \(=\) | \(\ds 1 + 9 + 25 + 64\) | \(\ds = 1^2 + 3^2 + 5^2 + 8^2\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 9 + 16 + 25 + 49\) | \(\ds = 3^2 + 4^2 + 5^2 + 7^2\) | |||||||||||
\(\ds 105\) | \(=\) | \(\ds 4 + 16 + 36 + 47\) | \(\ds = 2^2 + 4^2 + 6^2 + 7^2\) | |||||||||||
\(\ds 107\) | \(=\) | \(\ds 1 + 9 + 16 + 81\) | \(\ds = 1^2 + 3^2 + 4^2 + 9^2\) | |||||||||||
\(\ds 109\) | \(=\) | \(\ds 4 + 16 + 25 + 64\) | \(\ds = 2^2 + 4^2 + 5^2 + 8^2\) | |||||||||||
\(\ds 111\) | \(=\) | \(\ds 1 + 25 + 36 + 49\) | \(\ds = 1^2 + 5^2 + 6^2 + 7^2\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 1 + 4 + 25 + 81\) | \(\ds = 1^2 + 2^2 + 5^2 + 9^2\) | |||||||||||
\(\ds 113\) | \(=\) | \(\ds 4 + 9 + 36 + 64\) | \(\ds = 2^2 + 3^2 + 6^2 + 8^2\) | |||||||||||
\(\ds 117\) | \(=\) | \(\ds 1 + 16 + 36 + 64\) | \(\ds = 1^2 + 4^2 + 6^2 + 8^2\) | |||||||||||
\(\ds 119\) | \(=\) | \(\ds 4 + 9 + 25 + 81\) | \(\ds = 2^2 + 3^2 + 5^2 + 9^2\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 9 + 25 + 36 + 49\) | \(\ds = 3^2 + 5^2 + 6^2 + 7^2\) | |||||||||||
\(\ds 121\) | \(=\) | \(\ds 1 + 4 + 16 + 100\) | \(\ds = 1^2 + 2^2 + 4^2 + 10^2\) | |||||||||||
\(\ds 123\) | \(=\) | \(\ds 1 + 9 + 49 + 64\) | \(\ds = 1^2 + 3^2 + 7^2 + 8^2\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 1 + 16 + 25 + 81\) | \(\ds = 1^2 + 4^2 + 5^2 + 9^2\) | |||||||||||
\(\ds 125\) | \(=\) | \(\ds 9 + 16 + 36 + 64\) | \(\ds = 3^2 + 4^2 + 6^2 + 8^2\) | |||||||||||
\(\ds 127\) | \(=\) | \(\ds 1 + 9 + 36 + 81\) | \(\ds = 1^2 + 3^2 + 6^2 + 9^2\) | |||||||||||
\(\ds 129\) | \(=\) | \(\ds 4 + 9 + 16 + 100\) | \(\ds = 2^2 + 3^2 + 4^2 + 10^2\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 4 + 25 + 36 + 64\) | \(\ds = 2^2 + 5^2 + 6^2 + 8^2\) | |||||||||||
\(\ds 131\) | \(=\) | \(\ds 9 + 16 + 25 + 81\) | \(\ds = 3^2 + 4^2 + 5^2 + 9^2\) | |||||||||||
\(\ds 133\) | \(=\) | \(\ds 4 + 16 + 49 + 64\) | \(\ds = 2^2 + 4^2 + 7^2 + 8^2\) | |||||||||||
\(\ds 135\) | \(=\) | \(\ds 1 + 4 + 9 + 121\) | \(\ds = 1^2 + 2^2 + 3^2 + 11^2\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 1 + 4 + 49 + 81\) | \(\ds = 1^2 + 2^2 + 7^2 + 9^2\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 1 + 9 + 25 + 100\) | \(\ds = 1^2 + 3^2 + 5^2 + 10^2\) | |||||||||||
\(\ds 137\) | \(=\) | \(\ds 4 + 16 + 36 + 81\) | \(\ds = 2^2 + 4^2 + 6^2 + 9^2\) | |||||||||||
\(\ds 139\) | \(=\) | \(\ds 1 + 25 + 49 + 64\) | \(\ds = 1^2 + 5^2 + 7^2 + 8^2\) | |||||||||||
\(\ds 141\) | \(=\) | \(\ds 16 + 25 + 36 + 64\) | \(\ds = 4^2 + 5^2 + 6^2 + 8^2\) | |||||||||||
\(\ds 143\) | \(=\) | \(\ds 1 + 25 + 36 + 81\) | \(\ds = 1^2 + 5^2 + 6^2 + 9^2\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 4 + 9 + 49 + 81\) | \(\ds = 2^2 + 3^2 + 7^2 + 9^2\) | |||||||||||
\(\ds 145\) | \(=\) | \(\ds 4 + 16 + 25 + 100\) | \(\ds = 2^2 + 4^2 + 5^2 + 10^2\) | |||||||||||
\(\ds 147\) | \(=\) | \(\ds 1 + 16 + 49 + 81\) | \(\ds = 1^2 + 4^2 + 7^2 + 9^2\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 1 + 9 + 16 + 121\) | \(\ds = 1^2 + 3^2 + 4^2 + 11^2\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 9 + 25 + 49 + 64\) | \(\ds = 3^2 + 5^2 + 7^2 + 8^2\) | |||||||||||
\(\ds 149\) | \(=\) | \(\ds 1 + 4 + 25 + 121\) | \(\ds = 1^2 + 2^2 + 5^2 + 11^2\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 4 + 9 + 36 + 100\) | \(\ds = 2^2 + 3^2 + 6^2 + 10^2\) | |||||||||||
\(\ds 151\) | \(=\) | \(\ds 9 + 25 + 36 + 81\) | \(\ds = 3^2 + 5^2 + 6^2 + 9^2\) | |||||||||||
\(\ds 153\) | \(=\) | \(\ds 4 + 36 + 49 + 64\) | \(\ds = 2^2 + 6^2 + 7^2 + 8^2\) | |||||||||||
\(\ds 155\) | \(=\) | \(\ds 9 + 16 + 49 + 81\) | \(\ds = 3^2 + 4^2 + 7^2 + 9^2\) |
It remains to be demonstrated that the above sequence is indeed complete.
The original article by Franz Halter-Koch states:
- Satz $3$. Genau dann is $n \in N$ nicht Summe von vier verschiedenen positiven (im Falle $n \not \equiv 0 \bmod 8$ auch teilerfremden) Quadraten, wenn entwieder
- $n = 4^h a \quad$ mit $h \ge 0$ und $a \in \set {1, 2, \ldots, 19, 22, 23, 25, 26, 27, 31, 33, 34, 37, 38, 42, 43, 47, 55, 58, 67, 73, 82, 97, 103}$
- oder
- $n \in \set {21, 29, 35, 41, 45, 49, 53, 59, 61, 69, 77, 83, 89, 101, 115, 157}$
That is, in English:
- Statement $3$. $n \in N$ is not the sum of four different positive squares (in the case where $n \not \equiv 0 \bmod 8$ also non-prime) if and only if:
- $n = 4^h a \quad$ where $h \ge 0$ and $a \in \set {1, 2, \ldots, 19, 22, 23, 25, 26, 27, 31, 33, 34, 37, 38, 42, 43, 47, 55, 58, 67, 73, 82, 97, 103}$
- or
- $n \in \set {21, 29, 35, 41, 45, 49, 53, 59, 61, 69, 77, 83, 89, 101, 115, 157}$
![]() | This theorem requires a proof. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Sources
- 1982: Franz Halter-Koch: Darstellung natürlicher Zahlen als Summe von Quadraten (Acta Arith. Vol. 42: pp. 11 – 20)
- 1994: Paul T. Bateman, Adolf J. Hildebrand and George B. Purdy: Sums of Distinct Squares (Acta Arith. Vol. 67, no. 4: pp. 349 – 380)
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $157$