One-to-Many Image of Set Difference

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\RR \subseteq S \times T$ be a relation.

Let $A$ and $B$ be subsets of $S$.


Then:

$(1): \quad \RR \sqbrk A \setminus \RR \sqbrk B = \RR \sqbrk {A \setminus B}$

if and only if $\RR$ is one-to-many.


Corollary 1

Let $\RR \subseteq S \times T$ be a relation which is one-to-many.

Let $A \subseteq B \subseteq S$.


Then:

$\relcomp {\RR \sqbrk B} {\RR \sqbrk A} = \RR \sqbrk {\relcomp B A}$

where $\complement$ (in this context) denotes relative complement.


Corollary 2

Let $\RR \subseteq S \times T$ be a relation which is one-to-many.

Let $A$ be a subset of $S$.


Then:

$\relcomp {\Img \RR} {\RR \sqbrk A} = \RR \sqbrk {\relcomp S A}$

where $\complement$ (in this context) denotes relative complement.


In the language of direct image mappings this can be presented as:

$\forall A \in \powerset S: \map {\paren {\complement_{\Img \RR} \circ \RR^\to} } A = \map {\paren {\RR^\to \circ \complement_S} } A$


Proof

Sufficient Condition

First, to show that $(1)$ holds if $\RR$ is one-to-many.


From Image of Set Difference under Relation, we already have:

$\RR \sqbrk A \setminus \RR \sqbrk B \subseteq \RR \sqbrk {A \setminus B}$


So we just need to show:

$\RR \sqbrk {A \setminus B} \subseteq \RR \sqbrk A \setminus \RR \sqbrk B$


Let $t \notin \RR \sqbrk A \setminus \RR \sqbrk B$.

Then by De Morgan's Laws:

$t \notin \RR \sqbrk A \lor t \in \RR \sqbrk B$




Suppose $t \notin \RR \sqbrk A$.

Then by definition of a relation:

$\neg \exists s \in A: \tuple {s, t} \in \RR$

By Image of Subset is Subset of Image:

$\RR \sqbrk {A \setminus B} \subseteq \RR \sqbrk A$

Thus, by definition of subset and Rule of Transposition:

$t \notin \RR \sqbrk A \implies t \notin \RR \sqbrk {A \setminus B}$


Now suppose $t \in \RR \sqbrk B$.

Then:

$\exists s \in B: \tuple {s, t} \in \RR$

Because $\RR$ is one-to-many:

$\forall x \in S: \tuple {x, t} \in \RR \implies x = s$

and thus:

$x \in B$

Thus:

$x \notin A \setminus B$

and hence:

$t \notin \RR \sqbrk {A \setminus B}$


So by Proof by Cases:

$t \notin \RR \sqbrk A \setminus \RR \sqbrk B \implies t \notin \RR \sqbrk {A \setminus B}$


The result follows from Set Complement inverts Subsets:

$S \subseteq T \iff \map \complement T \subseteq \map \complement S$

$\Box$


Necessary Condition

Now for the converse: If $(1)$ holds, it is to be shown that $\RR$ is one-to-many.


Let $s, t \in S$ be distinct.

That is, $s \ne t$.

Then in particular:

$\set s \setminus \set t = \set s$

Applying $(1)$ to these two sets, it follows that:

$\RR \sqbrk {\set s} \setminus \RR \sqbrk {\set t} = \RR \sqbrk {\set s}$

By Set Difference with Disjoint Set, this implies that:

$\RR \sqbrk {\set s} \cap \RR \sqbrk {\set t} = \O$


It follows that every element of $T$ can be related to at most one element of $S$.

That is, $\RR$ is one-to-many.

$\blacksquare$