One is not Prime

From ProofWiki
Jump to navigation Jump to search


The integer $1$ (one) is not a prime number.

Proof 1

By definition, a prime number is a positive integer which has exactly $2$ divisors which are themselves positive integers.

From Divisors of One, the only divisors of $1$ are $1$ and $-1$.

So the only divisor of $1$ which is a positive integer is $1$.

As $1$ has only one such divisor, it is not classified as a prime number.


Proof 2

From Sigma Function of Prime Number, the sum $\map \sigma p$ of all the positive integer divisors of a prime number $p$ is $p + 1$.

But from Sigma Function of 1, $\map \sigma 1 = 1$.

If $1$ were to be classified as prime, then $\map \sigma 1$ would be an exception to the rule that $\map \sigma p = p + 1$.



WARNING: This link is broken. Amend the page to use {{KhanAcademySecure}} and check that it links to the appropriate page.