Open Ball in P-adic Numbers is Closed Ball

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $p$ be a prime number.

Let $\struct {\Q_p, \norm {\,\cdot\,}_p}$ be the $p$-adic numbers.

Let $a \in \Q_p$.

For all $\epsilon \in \R_{>0}$:

Let $\map {B_\epsilon} a$ denote the open $\epsilon$-ball of $a$
Let $\map {B^-_\epsilon} a$ denote the closed $\epsilon$-ball of $a$.


Then:

$\forall n \in Z : \map {B_{p^{-n} } } a = \map {B^{\,-}_{p^{-\paren {n + 1} } } } a$

Proof

Let $n \in \Z$.

Then:

\(\displaystyle x \in \map { B_{p^{-n} } } a\) \(\leadstoandfrom\) \(\displaystyle \norm {x - a}_p < p^{-n}\) Definition of Open Ball of Normed Division Ring
\(\displaystyle \) \(\leadstoandfrom\) \(\displaystyle \norm {x - a}_p \le p^{-\paren {n + 1} }\) P-adic Norm of p-adic Number is Power of p
\(\displaystyle \) \(\leadstoandfrom\) \(\displaystyle x \in \map { B^{\,-}_{p^{-\paren {n + 1} } } } a\) Definition of Closed Ball of Normed Division Ring

By set equality:

$\map {B_{p^{-n} } } a = \map {B^{\,-}_{p^{-\paren {n + 1} } } } a$

$\blacksquare$