Open Ball in Real Number Line is Open Interval

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {\R, d}$ denote the real number line $\R$ with the usual (Euclidean) metric $d$.

Let $x \in \R$ be a point in $\R$.

Let $\map {B_\epsilon} x$ be the open $\epsilon$-ball at $x$.


Then $\map {B_\epsilon} x$ is the open interval $\openint {x - \epsilon} {x + \epsilon}$.


Proof

Let $S = \map {B_\epsilon} x$ be an open $\epsilon$-ball at $x$.

Let $y \in \map {B_\epsilon} x$.

Then:

\(\ds y\) \(\in\) \(\, \ds \map {B_\epsilon} x \, \) \(\ds \)
\(\ds \leadstoandfrom \ \ \) \(\ds \map d {y, x}\) \(<\) \(\, \ds \epsilon \, \) \(\ds \) Definition of Open $\epsilon$-Ball
\(\ds \leadstoandfrom \ \ \) \(\ds \size {y - x}\) \(<\) \(\, \ds \epsilon \, \) \(\ds \) Definition of Euclidean Metric on Real Number Line
\(\ds \leadstoandfrom \ \ \) \(\ds -\epsilon\) \(<\) \(\, \ds y - x \, \) \(\, \ds < \, \) \(\ds \epsilon\) Definition of Absolute Value
\(\ds \leadstoandfrom \ \ \) \(\ds x - \epsilon\) \(<\) \(\, \ds y \, \) \(\, \ds < \, \) \(\ds x + \epsilon\)
\(\ds \leadstoandfrom \ \ \) \(\ds y\) \(\in\) \(\, \ds \openint {x - \epsilon} {x + \epsilon} \, \) \(\ds \) Definition of Open Real Interval

As the implications go both ways:

$\map {B_\epsilon} x \subseteq \openint {x - \epsilon} {x + \epsilon}$

and

$\map {B_\epsilon} x \supseteq \openint {x - \epsilon} {x + \epsilon}$

By definition of set equality:

$\map {B_\epsilon} x = \openint {x - \epsilon} {x + \epsilon}$

Hence the result.

$\blacksquare$


Also see


Sources