Operation Induced by Permutation on Semigroup is not necessarily Associative

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {S, \circ}$ be a semigroup.

Let $\sigma: S \to S$ be a permutation on $S$.

Let $\circ_\sigma$ be the operation on $S$ induced by $\sigma$:

$\forall x, y \in S: x \circ_\sigma y := \map \sigma {x \circ y}$


Then $\circ_\sigma$ is not necessarily associative on $S$.


Proof

Proof by Counterexample

Let $S = \set {a, b, c}$.

Let $\circ$ denote the right operation on $S$:

$\forall x, y \in S: x \to y = y$

From Structure under Right Operation is Semigroup, $\struct {S, \circ}$ is a semigroup.

Hence we have:

$a \circ \paren {b \circ c} = c = \paren {a \circ b} \circ c$


Let $\sigma$ denote the permutation on $S$ defined as:

\(\ds \map \sigma a\) \(=\) \(\ds b\)
\(\ds \map \sigma b\) \(=\) \(\ds c\)
\(\ds \map \sigma c\) \(=\) \(\ds a\)

We have:

\(\ds a \circ_\sigma \paren {b \circ_\sigma c}\) \(=\) \(\ds a \circ_\sigma \map \sigma {b \circ c}\) Definition of Operation Induced by Permutation
\(\ds \) \(=\) \(\ds a \circ_\sigma \map \sigma c\) Definition of Right Operation
\(\ds \) \(=\) \(\ds a \circ_\sigma a\) Definition of $\sigma$
\(\ds \) \(=\) \(\ds \map \sigma {a \circ a}\) Definition of Operation Induced by Permutation
\(\ds \) \(=\) \(\ds \map \sigma a\) Definition of Right Operation
\(\ds \) \(=\) \(\ds b\) Definition of $\sigma$

Then:

\(\ds \paren {a \circ_\sigma b} \circ_\sigma c\) \(=\) \(\ds \map \sigma {a \circ b} \circ_\sigma c\) Definition of Operation Induced by Permutation
\(\ds \) \(=\) \(\ds \map \sigma b \circ_\sigma c\) Definition of Right Operation
\(\ds \) \(=\) \(\ds c \circ_\sigma c\) Definition of $\sigma$
\(\ds \) \(=\) \(\ds \map \sigma {c \circ c}\) Definition of Operation Induced by Permutation
\(\ds \) \(=\) \(\ds \map \sigma c\) Definition of Right Operation
\(\ds \) \(=\) \(\ds a\) Definition of $\sigma$

So $a \circ_\sigma \paren {b \circ_\sigma c} \ne \paren {a \circ_\sigma b} \circ_\sigma c$ and the result follows.

$\blacksquare$