Order-Extension Principle/Strict/Finite Set

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $T$ be a finite set.

Let $\prec$ be a strict ordering on $T$.


Then there exists a strict total ordering $<$ on $T$ such that:

$\forall a, b \in T: \left({a \prec b \implies a < b}\right)$


Proof