Ordinal is Member of Ordinal Class

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $A$ be an ordinal.


Then:

$A \in \operatorname{On} \lor A = \operatorname{On}$

where $\operatorname{On}$ denote the class of ordinals .


Proof

By hypothesis $A$ is an ordinal

From Ordinal Class is Ordinal and Ordinal Membership is Trichotomy:

$A \in \operatorname{On} \lor A = \operatorname{On} \lor \operatorname{On} \in A$

But by the Burali-Forti Paradox $\operatorname{On}$ is a proper class.

Therefore:

$A \in \operatorname{On} \lor A = \operatorname{On}$

$\blacksquare$



Sources