# P-Sequence Space with Pointwise Addition and Pointwise Scalar Multiplication on Ring of Sequences form Vector Space

## Theorem

Let $\ell^p$ be the p-sequence space.

Let $\struct {\R, +_\R, \times_\R}$ be the field of real numbers.

Let $\paren +$ be the pointwise addition on the ring of sequences.

Let $\paren {\, \cdot \,}$ be the pointwise multiplication on the ring of sequences.

Then $\struct {\ell^p, +, \, \cdot \,}_\R$ is a vector space.

## Proof

Let $\sequence {a_n}_{n \mathop \in \N}, \sequence {b_n}_{n \mathop \in \N}, \sequence {c_n}_{n \mathop \in \N} \in \ell^p$.

Let $\lambda, \mu \in \R$.

Let $\sequence 0 := \tuple {0, 0, 0, \dots}$ be a real-valued function.

Let us use real number addition and multiplication.

$\sequence {a_n + b_n}_{n \mathop \in \N} := \sequence {a_n}_{n \mathop \in \N} +_\R \sequence {b_n}_{n \mathop \in \N}$.

Define pointwise scalar multiplication as:

$\sequence {\lambda \cdot a_n}_{n \mathop \in \N} := \lambda \times_\R \sequence {a_n}_{n \mathop \in \N}$

Let the additive inverse be $\sequence {-a_n} := - \sequence {a_n}$.

### Closure Axiom

By assumption, $\sequence {a_n}_{n \mathop \in \N}, \sequence {b_n}_{n \mathop \in \N} \in \ell^p$.

By definition:

$\displaystyle \sum_{n \mathop = 1}^\infty \size {a_n}^p < \infty$
$\displaystyle \sum_{n \mathop = 1}^\infty \size {b_n}^p < \infty$

Consider the sequence $\sequence {a_n + b_n}$.

Then:

 $\displaystyle \sum_{n \mathop = 1}^\infty \size {a_n + b_n}^p$ $\le$ $\displaystyle \sum_{n \mathop = 1}^\infty \paren {\size {a_n} + \size {b_n} }^p$ $\displaystyle$ $\le$ $\displaystyle \sum_{n \mathop = 1}^\infty \paren {\map \max {\size {a_n}, \size {b_n} } + \map \max {\size {a_n}, \size {b_n} } }^p$ Definition of Max Operation $\displaystyle$ $=$ $\displaystyle \sum_{n \mathop = 1}^\infty 2^p \paren {\map \max {\size {a_n}, \size {b_n} } }^p$ $\displaystyle$ $\le$ $\displaystyle 2^p \sum_{n \mathop = 1}^\infty \paren {\size {a_n}^p + \size {b_n}^p}$ $\displaystyle$ $<$ $\displaystyle \infty$ $\sequence {a_n}, \sequence {b_n} \in \ell^p$

Hence:

$\sequence {a_n + b_n} \in \ell^p$

$\Box$

### Commutativity Axiom

By Pointwise Addition on Ring of Sequences is Commutative, $\sequence {a_n} + \sequence {b_n} = \sequence {b_n} + \sequence {a_n}$

$\Box$

### Associativity Axiom

By Pointwise Addition on Ring of Sequences is Associative, $\paren {\sequence {a_n} + \sequence {b_n} } + \sequence {c_n} = \sequence {a_n} + \paren {\sequence {b_n} + \sequence {c_n} }$.

$\Box$

### Identity Axiom

 $\displaystyle \sequence {0 + a_n}$ $=$ $\displaystyle \sequence 0 +_\R \sequence {a_n}$ Definition of Pointwise Addition on Ring of Sequences $\displaystyle$ $=$ $\displaystyle \tuple {0, 0, 0, \dots} +_\R \sequence {a_n}$ Definition of $\sequence 0$ $\displaystyle$ $=$ $\displaystyle \sequence {a_n}$

$\Box$

### Inverse Axiom

 $\displaystyle \sequence {a_n + \paren {-a_n} }$ $=$ $\displaystyle \sequence {a_n} +_\R \sequence {-a_n}$ Definition of Pointwise Addition on Ring of Sequences $\displaystyle$ $=$ $\displaystyle \sequence {a_n} +_\R \paren {-1} \times_\R \sequence {a_n}$ Definition of $\sequence {-a_n}$ $\displaystyle$ $=$ $\displaystyle 0$

$\Box$

 $\displaystyle \sequence {\paren {\lambda +_\R \mu} \cdot a_n }$ $=$ $\displaystyle \paren {\lambda +_\R \mu} \times_\R \sequence {a_n}$ Definition of Pointwise Scalar Multiplication on Ring of Sequences $\displaystyle$ $=$ $\displaystyle \lambda \times_\R \sequence {a_n} +_\R \mu \times_\R \sequence {a_n}$ Real Multiplication Distributes over Addition $\displaystyle$ $=$ $\displaystyle \sequence {\lambda \cdot a_n} +_\R \sequence {\mu \cdot a_n}$ Definition of Pointwise Scalar Multiplication on Ring of Sequences $\displaystyle$ $=$ $\displaystyle \sequence {\lambda \cdot a_n + \mu \cdot a_n}$ Definition of Pointwise Addition on Ring of Sequences

$\Box$

 $\displaystyle \lambda \times_\R \sequence {a_n + b_n}$ $=$ $\displaystyle \lambda \times_\R \paren {\sequence {a_n} +_\R \sequence {b_n} }$ Definition of Pointwise Addition on Ring of Sequences $\displaystyle$ $=$ $\displaystyle \lambda \times_\R \sequence {a_n} +_\R \lambda \times_\R \sequence {b_n}$ Real Multiplication Distributes over Addition $\displaystyle$ $=$ $\displaystyle \sequence {\lambda \cdot a_n} +_\R \sequence {\lambda \cdot b_n}$ Definition of Pointwise Scalar Multiplication on Ring of Sequences $\displaystyle$ $=$ $\displaystyle \sequence {\lambda \cdot a_n + \mu \cdot b_n}$ Definition of Pointwise Addition on Ring of Sequences

$\Box$

### Associativity with Scalar Multiplication

 $\displaystyle \sequence {\paren {\lambda \times_\R \mu} \cdot a_n}$ $=$ $\displaystyle \paren {\lambda \times_\R \mu} \times_\R \sequence {a_n}$ Definition of Pointwise Scalar Multiplication on Ring of Sequences $\displaystyle$ $=$ $\displaystyle \lambda \times_\R \paren {\mu \times_\R \sequence {a_n} }$ Real Multiplication is Associative $\displaystyle$ $=$ $\displaystyle \lambda \times_\R \sequence {\mu \cdot a_n}$ Definition of Pointwise Scalar Multiplication on Ring of Sequences $\displaystyle$ $=$ $\displaystyle \sequence {\lambda \cdot \paren {\mu \cdot a_n} }$ Definition of Pointwise Scalar Multiplication on Ring of Sequences

$\Box$

### Identity for Scalar Multiplication

 $\displaystyle \sequence {1 \cdot a_n}$ $=$ $\displaystyle 1 \times_\R \sequence {a_n}$ Definition of Pointwise Scalar Multiplication on Ring of Sequences $\displaystyle$ $=$ $\displaystyle \sequence {a_n}$

$\Box$

$\blacksquare$