P-adic Norm Characterisation of Divisibility by Power of p

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $p \in \N$ be a prime.

Let $\Q$ denote the rational numbers.

Let $\norm{\,\cdot\,}$ denote the $p$-adic norm on $\Q$.


Then:

$\forall a, b \in \Z: a \equiv b \pmod {p^n} \iff \norm {a - b}_p \le p^{-n}$

Proof

Let $a, b \in \Z$.

We have:

\(\ds a \equiv b \pmod {p^n}\) \(\iff\) \(\ds p^n \divides \paren{a - b}\) Definition of Congruence Modulo Integer
\(\ds \) \(\iff\) \(\ds n \le sup(m : p^m \divides \paren{a - b}\) Definition of Supremum of Set
\(\ds \) \(\iff\) \(\ds n \le \map {\nu_p} {a-b}\) Definition of P-adic Valuation
\(\ds \) \(\iff\) \(\ds p^n \le p^{\map {\nu_p} {a-b} }\) Power Function on Base Greater than One is Strictly Increasing
\(\ds \) \(\iff\) \(\ds \dfrac 1 {p^{\map {\nu_p} {a-b} } } \le \dfrac 1 {p^n}\) Inversion Mapping Reverses Ordering in Ordered Group
\(\ds \) \(\iff\) \(\ds \norm {a - b}_p \le p^{-n}\) Definition of P-adic Norm

$\blacksquare$