P-adic Norm is Norm/Proof 1
Theorem
The $p$-adic norm forms a norm on the rational numbers $\Q$.
Proof
Let $v_p$ be the $p$-adic valuation on the rational numbers.
Recall that the $p$-adic norm is defined as:
- $\forall q \in \Q: \norm q_p := \begin{cases} 0 & : q = 0 \\ p^{- \map {\nu_p} q} & : q \ne 0 \end{cases}$
We must show the following hold for all $x$, $y \in \Q$:
\((\text N 1)\) | $:$ | \(\ds \forall x \in \Q:\) | \(\ds \norm x_p = 0 \) | \(\ds \iff \) | \(\ds x = 0 \) | ||||
\((\text N 2)\) | $:$ | \(\ds \forall x, y \in \Q:\) | \(\ds \norm {x y}_p \) | \(\ds = \) | \(\ds \norm x_p \times \norm y_p \) | ||||
\((\text N 3)\) | $:$ | \(\ds \forall x, y \in \Q:\) | \(\ds \norm {x + y}_p \) | \(\ds \le \) | \(\ds \norm x_p + \norm y_p \) |
Norm Axiom $\text N 1$: Positive Definiteness
By Power of Positive Real Number is Positive:
- $\ds \forall s \in \R: \frac 1 {p^s} > 0$
By definition of the $p$-adic norm it follows that:
- $\forall x \in \Q: \norm x_p = 0 \iff x = 0$
Thus the $p$-adic norm fulfils Norm Axiom $\text N 1$: Positive Definiteness.
$\Box$
Norm Axiom $\text N 2$: Positive Homogeneity
Let $x = 0$ or $y = 0$.
Then $\norm x_p = 0$ or $\norm y_p = 0$ from Norm Axiom $\text N 1$: Positive Definiteness, and:
\(\ds x y\) | \(=\) | \(\ds 0\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \norm {x y}_p\) | \(=\) | \(\ds 0\) | Norm Axiom $\text N 1$: Positive Definiteness | ||||||||||
\(\ds \) | \(=\) | \(\ds \norm x_p \times \norm y_p\) |
Let $x, y\in \Q_{\ne 0}$.
Then:
\(\ds \norm {x y}_p\) | \(=\) | \(\ds \frac 1 {p^{\map {\nu_p} {x y} } }\) | Definition of $p$-adic Norm | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {p^{\map {\nu_p} x + \map {\nu_p} y} }\) | $p$-adic Valuation is Valuation | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {p^{\map {\nu_p} x} p^{\map {\nu_p} y} }\) | Product of Powers | |||||||||||
\(\ds \) | \(=\) | \(\ds \norm x_p \times \norm y_p\) | Definition of $p$-adic Norm |
Thus the $p$-adic norm fulfils Norm Axiom $\text N 2$: Positive Homogeneity.
$\Box$
Norm Axiom $\text N 3$: Triangle Inequality
Let $x = 0$ or $y = 0$, or $x + y = 0$, the result is trivial.
Let $x = 0$.
Then:
\(\ds x\) | \(=\) | \(\ds 0\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \norm x_p\) | \(=\) | \(\ds 0\) | Definition of $p$-adic Norm | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \norm x_p + \norm y_p\) | \(=\) | \(\ds \norm y_p\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \norm {x + y}_p\) |
and so $\norm {x + y}_p \le \norm x_p + \norm y_p$
The same argument holds for $y = 0$.
Let $x + y = 0$.
\(\ds x + y\) | \(=\) | \(\ds 0\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \norm {x + y}_p\) | \(=\) | \(\ds 0\) | Definition of $p$-adic Norm | ||||||||||
\(\ds \) | \(\le\) | \(\ds \norm x_p + \norm y_p\) | as $\norm x_p \ge 0$ and $\norm y_p \ge 0$ from Norm Axiom $\text N 1$: Positive Definiteness |
Let $x, y, x + y \in \Q_{\ne 0}$.
From $p$-adic Valuation is Valuation:
- $\map {\nu_p} {x + y} \ge \min \set {\map {\nu_p} x, \map {\nu_p} y}$
Then:
\(\ds \norm {x + y}_p\) | \(=\) | \(\ds p^{-\map {\nu_p} {x + y} }\) | Definition of $p$-adic Norm | |||||||||||
\(\ds \) | \(\le\) | \(\ds \max \set {p^{-\map {\nu_p} x}, p^{-\map {\nu_p} y} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \max \set {\norm x_p, \norm y_p}\) | Definition of $p$-adic Norm | |||||||||||
\(\ds \) | \(\le\) | \(\ds \norm x_p + \norm y_p\) |
Thus the $p$-adic norm fulfils Norm Axiom $\text N 3$: Triangle Inequality.
$\Box$
All norm axioms are seen to be satisfied.
Hence the result.
$\blacksquare$
Sources
- 1997: Fernando Q. Gouvea: p-adic Numbers: An Introduction ... (previous) ... (next): $\S 2.1$: Absolute Values on a Field: Proposition $2.1.5$
- 2007: Svetlana Katok: p-adic Analysis Compared with Real ... (previous) ... (next): $\S 1.4$ The field of $p$-adic numbers $\Q_p$: Proposition $1.26$