P-adic Number times Integer Power of p is P-adic Integer

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $p$ be a prime number.

Let $\struct {\Q_p, \norm {\,\cdot\,}_p}$ be the $p$-adic numbers.

Let $\Z_p$ be the $p$-adic integers.


Then:

$\forall a \in \Q_p: \exists n \in \N: p^n a \in \Z_p$


Proof

Let $a \in \Q_p$.


Case: $\norm a_p \le 1$

Let $\norm a_p \le 1$.

By definition of the $p$-adic integers:

$a \in \Z_p$.

Hence:

$p^0 a \in \Z_p$.

$\Box$


Case: $\norm a_p > 1$

Let $\norm a_p > 1$.

From P-adic Number times P-adic Norm is P-adic Unit, there exists $n \in \Z$ such that $p^n a$ is a $p$-adic unit.

Then:

\(\ds \norm{p^n a}_p\) \(=\) \(\ds 1\) P-adic Unit has Norm Equal to One
\(\, \ds \leadstoandfrom \, \) \(\ds \norm{p^n}_p \norm a_p\) \(=\) \(\ds 1\) Non-Archimedean Norm Axiom $\text N 2$: Multiplicativity
\(\, \ds \leadstoandfrom \, \) \(\ds \norm{p^n}_p\) \(<\) \(\ds 1\) As $\norm{a}_p > 1$ by assumption
\(\, \ds \leadstoandfrom \, \) \(\ds p^{-n}\) \(<\) \(\ds 1\) Definition of $p$-adic norm on integers
\(\, \ds \leadstoandfrom \, \) \(\ds p^n\) \(>\) \(\ds 1\)
\(\, \ds \leadstoandfrom \, \) \(\ds n\) \(>\) \(\ds 0\) Real Power Function on Base Greater than One is Strictly Increasing

$\blacksquare$


Sources