P-adic Open Ball is Instance of Open Ball of a Norm

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $p$ be a prime number.

Let $\struct {\Q_p, \norm {\,\cdot\,}_p}$ be the $p$-adic numbers.

Let $a \in \Q_p$.

Let $\epsilon \in \R_{>0}$ be a strictly positive real number.

Let $B \subseteq \Q_p$.


Then:

$B$ is an open ball in $p$-adic numbers with radius $\epsilon$ and centre $a$

if and only if:

$B$ is an open ball of the normed division ring $\struct {\Q_p, \norm {\,\cdot\,}_p}$ with radius $\epsilon$ and centre $a$ .


That is, the definition of an open ball in $p$-adic numbers is a specific instance of the general definition of an open ball in a normed division ring.


Proof

From P-adic Numbers form Non-Archimedean Valued Field:

the $p$-adic numbers $\struct {\Q_p, \norm {\,\cdot\,}_p}$ form a non-Archimedean valued field.

The definition of an open ball in $p$-adic numbers is identical to the definition of an open ball of a normed division ring with respect to the norm $\norm {\,\cdot\,}_p$.

$\blacksquare$