Pandigital Properties of 987,654,321

From ProofWiki
Jump to: navigation, search

Theorem

$987 \, 654 \, 321$ has the following properties:

It is pandigital, and remains so when multiplied by $1$, $2$, $4$, $5$, $7$ and $8$:

\(\displaystyle 987 \, 654 \, 321 \times 1\) \(=\) \(\displaystyle 987 \, 654 \, 321\)
\(\displaystyle 987 \, 654 \, 321 \times 2\) \(=\) \(\displaystyle 1 \, 975 \, 308 \, 642\)
\(\displaystyle 987 \, 654 \, 321 \times 3\) \(=\) \(\displaystyle 2 \, 962 \, 962 \, 963\)
\(\displaystyle 987 \, 654 \, 321 \times 4\) \(=\) \(\displaystyle 3 \, 950 \, 617 \, 284\)
\(\displaystyle 987 \, 654 \, 321 \times 5\) \(=\) \(\displaystyle 4 \, 938 \, 271 \, 605\)
\(\displaystyle 987 \, 654 \, 321 \times 6\) \(=\) \(\displaystyle 5 \, 925 \, 925 \, 925\)
\(\displaystyle 987 \, 654 \, 321 \times 7\) \(=\) \(\displaystyle 6 \, 975 \, 308 \, 642\)
\(\displaystyle 987 \, 654 \, 321 \times 8\) \(=\) \(\displaystyle 7 \, 901 \, 234 \, 568\)
\(\displaystyle 987 \, 654 \, 321 \times 9\) \(=\) \(\displaystyle 8 \, 888 \, 888 \, 889\)



Also:

$987 \, 654 \, 321 - 123 \, 456 \, 789 = 864 \, 197 \, 532$

which is also pandigital.


Sources