Partial Derivative wrt z of z^2 equals x^2 - 2 x y - 1 at (1, -2, -2)/Explicit Method

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z^2 = x^2 - 2 x y - 1$.

Then:

$\valueat {\dfrac {\partial z} {\partial x} } {x \mathop = 1, y \mathop = -2, z \mathop = -2} = -\dfrac 3 2$


Proof

First we make sure that $\tuple {1, -2, -2}$ actually satisfies the equation:

\(\ds x^2 - 2 x y - 1\) \(=\) \(\ds \paren 1^2 - 2 \paren 1 \paren {-2} - 1\) at $\tuple {1, -2, -2}$
\(\ds \) \(=\) \(\ds 1 + 4 - 1\)
\(\ds \) \(=\) \(\ds 4\)
\(\ds \) \(=\) \(\ds \paren {-2}^2\)
\(\ds \) \(=\) \(\ds z^2\) at $\tuple {1, -2, -2}$

and it is seen that this is the case.

$\Box$


\(\ds z^2\) \(=\) \(\ds x^2 - 2 x y - 1\)
\(\ds \leadsto \ \ \) \(\ds z\) \(=\) \(\ds \pm \sqrt {x^2 - 2 x y - 1}\)


When $z = -2$ we have that $\sqrt {x^2 - 2 x y - 1} < 0$.

Hence:

$z = -\sqrt {x^2 - 2 x y - 1}$


Thus we continue:

\(\ds \leadsto \ \ \) \(\ds \dfrac {\partial z} {\partial x}\) \(=\) \(\ds -\frac 1 {2 \sqrt {x^2 - 2 x y - 1} } \cdot \paren {2 x - 2 y}\) Power Rule for Derivatives, Chain Rule for Derivatives
\(\ds \) \(=\) \(\ds -\frac {2 x - 2 y} {2 \sqrt {x^2 - 2 x y - 1} }\)
\(\ds \) \(=\) \(\ds -\frac {2 \paren 1 - 2 \paren {-2} } {2 \sqrt {\paren 1^2 - 2 \paren 1 \paren {-2} - 1} }\) substituting $x = 1$ and $y = -2$
\(\ds \) \(=\) \(\ds -\frac 6 {2 \sqrt 4}\) simplifying
\(\ds \) \(=\) \(\ds -\frac 3 2\) simplifying

$\blacksquare$


Sources