Partial Derivative wrt z of z^2 equals x^2 - 2 x y - 1 at (1, -2, -2)/Implicit Method

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z^2 = x^2 - 2 x y - 1$.

Then:

$\valueat {\dfrac {\partial z} {\partial x} } {x \mathop = 1, y \mathop = -2, z \mathop = -2} = -\dfrac 3 2$


Proof

First we make sure that $\tuple {1, -2, -2}$ actually satisfies the equation:

\(\ds x^2 - 2 x y - 1\) \(=\) \(\ds \paren 1^2 - 2 \paren 1 \paren {-2} - 1\) at $\tuple {1, -2, -2}$
\(\ds \) \(=\) \(\ds 1 + 4 - 1\)
\(\ds \) \(=\) \(\ds 4\)
\(\ds \) \(=\) \(\ds \paren {-2}^2\)
\(\ds \) \(=\) \(\ds z^2\) at $\tuple {1, -2, -2}$

and it is seen that this is the case.

$\Box$


\(\ds z^2\) \(=\) \(\ds x^2 - 2 x y - 1\)
\(\ds 2 z \dfrac {\partial z} {\partial x}\) \(=\) \(\ds 2 x - 2 y\) Power Rule for Derivatives, Chain Rule for Derivatives
\(\ds \leadsto \ \ \) \(\ds \dfrac {\partial z} {\partial x}\) \(=\) \(\ds \frac {2 \paren 1 - 2 \paren {-2} } {2 \paren {-2} }\) substituting $x = 1$, $y = -2$ and $z = -2$
\(\ds \) \(=\) \(\ds \frac 6 {-4}\) simplifying
\(\ds \) \(=\) \(\ds -\frac 3 2\) simplifying

$\blacksquare$


Sources