Partial Fractions Expansion/Examples/Reciprocal of x by x + 1 squared

From ProofWiki
Jump to navigation Jump to search

Example of Partial Fractions Expansion

$\dfrac 1 {x \paren {x + 1}^2} = \dfrac 1 x - \dfrac 1 {\paren {x + 1} } - \dfrac 1 {\paren {x + 1}^2}$


Proof

\(\ds \dfrac 1 {x \paren {x + 1}^2}\) \(=\) \(\ds \dfrac A x + \dfrac B {\paren {x + 1} } + \dfrac C {\paren {x + 1}^2}\)
\(\ds \) \(=\) \(\ds \dfrac {A \paren {x + 1}^2 + B x \paren {x + 1} + C x} {x \paren {x + 1}^2}\)
\(\ds \) \(=\) \(\ds \dfrac {A \paren {x^2 + 2x + 1} + B \paren {x^2 + x} + C x} {x \paren {x + 1}^2}\)
\(\ds \) \(=\) \(\ds \dfrac {\paren {A + B} x^2 + \paren {2A + B + C} x + A} {x \paren {x + 1}^2}\)
\(\ds A\) \(=\) \(\ds 1\)
\(\ds \paren {A + B}\) \(=\) \(\ds 0\) $x^2$ term vanishes
\(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds -1\)
\(\ds \paren {2A + B + C}\) \(=\) \(\ds 0\) $x$ term vanishes
\(\ds \leadsto \ \ \) \(\ds C\) \(=\) \(\ds -1\)


Therefore:

$\dfrac 1 {x \paren {x + 1}^2} = \dfrac 1 x - \dfrac 1 {\paren {x + 1} } - \dfrac 1 {\paren {x + 1}^2}$

$\blacksquare$