Particular Point Topology is Topology

From ProofWiki
Jump to navigation Jump to search


Let $T = \struct {S, \tau_p}$ be a particular point space.

Then $\tau_p$ is a topology on $S$, and $T$ is a topological space.


We have by definition that $\O \in \tau_p$, and as $p \in S$ we have that $S \in \tau_p$.

Now let $U_1, U_2 \in \tau_p$.

By definition $p \in U_1$ and $p \in U_2$, and so $p \in U_1 \cap U_2$ by definition of set intersection.

So $U_1 \cap U_2 \in \tau_p$.

Now let $\UU \subseteq \tau_p$.

We have that $\forall U \in \UU: p \in U$.

Hence from Subset of Union $p \in \bigcup \UU$.

So all the properties are fulfilled for $\tau_p$ to be a topology on $S$.