# Pell's Equation/Examples/61

< Pell's Equation | Examples

Jump to navigation
Jump to search
## Theorem

- $x^2 - 61 y^2 = 1$

has the smallest positive integral solution:

- $x = 1 \, 766 \, 319 \, 049$
- $y = 226 \, 153 \, 980$

## Proof

From Continued Fraction Expansion of $\sqrt {61}$:

- $\sqrt {61} = \left[{7, \left\langle{1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14}\right\rangle}\right]$

The cycle is of length is $11$.

By the solution of Pell's Equation, the only solutions of $x^2 - 61 y^2 = 1$ are:

- ${p_{11 r} }^2 - 61 {q_{11 r} }^2 = \left({-1}\right)^{11 r}$

for $r = 1, 2, 3, \ldots$

When $r = 1$ this gives:

- ${p_{11}}^2 - 61 {q_{11}}^2 = -1$

which is not the solution required.

When $r = 2$ this gives:

- ${p_{22} }^2 - 61 {q_{22} }^2 = 1$

From Convergents of Continued Fraction Expansion of $\sqrt {61}$:

- $p_{22} = 1 \, 766 \, 319 \, 049$
- $q_{22} = 226 \, 153 \, 980$

although on that page the numbering goes from $p_0$ to $p_{21}$, and $q_0$ to $q_{21}$.

$\blacksquare$

## Sources

- 1997: David Wells:
*Curious and Interesting Numbers*(2nd ed.) ... (previous) ... (next): $61$