Periodicity of Hyperbolic Cosine

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $k \in \Z$.

Then:

$\map \cosh {x + 2 k \pi i} = \cosh x$


Proof

\(\ds \map \cosh {x + 2 k \pi i}\) \(=\) \(\ds \frac {e^{x + 2 k \pi i} + e^{- \paren {x + 2 k \pi i} } } {2 i}\) Definition of Hyperbolic Cosine
\(\ds \) \(=\) \(\ds \frac {e^{i \paren {-i x + 2 k \pi} } + e^{i \paren {i x + 2 \paren {-k} \pi} } } {2 i}\) $i^2 = -1$ and simplifying
\(\ds \) \(=\) \(\ds \frac {e^{i \paren {-i x} } + e^{i \paren {i x} } } {2 i}\) Periodicity of Complex Exponential Function
\(\ds \) \(=\) \(\ds \frac {e^x + e^{- x} } {2 i}\) $i^2 = -1$
\(\ds \) \(=\) \(\ds \cosh x\) Definition of Hyperbolic Cosine

$\blacksquare$


Sources