Periodicity of Hyperbolic Sine

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $k \in \Z$.

Then:

$\map \sinh {x + 2 k \pi i} = \sinh x$


Proof

\(\ds \map \sinh {x + 2 k \pi i}\) \(=\) \(\ds \frac {e^{x + 2 k \pi i} - e^{-\paren {x + 2 k \pi i} } } {2 i}\) Definition of Hyperbolic Sine
\(\ds \) \(=\) \(\ds \frac {e^{i \paren {-i x + 2 k \pi} } - e^{i \paren {i x + 2 \paren {-k} \pi} } } {2 i}\) $i^2 = -1$ and simplifying
\(\ds \) \(=\) \(\ds \frac {e^{i \paren {-i x} } - e^{i \paren {i x} } } {2 i}\) Periodicity of Complex Exponential Function
\(\ds \) \(=\) \(\ds \frac {e^x - e^{- x} } {2 i}\) $i^2 = -1$
\(\ds \) \(=\) \(\ds \sinh x\) Definition of Hyperbolic Sine

$\blacksquare$


Sources