# Pi as Sum of Sequence of Reciprocal of Product of Three Consecutive Integers

 It has been suggested that this article or section be renamed: Title is clumsy. Is there a name for this result? One may discuss this suggestion on the talk page.

## Theorem

$\dfrac {\pi - 3} 4 = \dfrac 1 {2 \times 3 \times 4} - \dfrac 1 {4 \times 5 \times 6} + \dfrac 1 {6 \times 7 \times 8} \cdots$

## Proof

Let $f: \R \to \R$ be the real function defined as:

$\forall x \in \R: \map f x = x^1 - x^3 + x^5 - x^7 + x^9 - x^{11} + x^{13} - x^{15} \cdots$

We can rewrite this infinite geometric sequence as follows:

 $\ds \map f x$ $=$ $\ds \sum_{n \mathop = 0}^\infty \paren {-1}^n x^{2 n + 1}$ $\ds$ $=$ $\ds x \sum_{n \mathop = 0}^\infty \paren {-1}^n x^{2 n}$ factoring out an x $\ds$ $=$ $\ds x \sum_{n \mathop = 0}^\infty \paren {-x^2}^ n$ Power of Power $\ds$ $=$ $\ds \dfrac x {1 - \paren {-x^2} }$ Sum of Infinite Geometric Sequence $\ds$ $=$ $\ds \dfrac x {1 + x^2 }$

Integrating the infinite geometric sequence $3$ times and using Integral of Power, we get:

 $\text {(1)}: \quad$ $\ds \int \map f x$ $=$ $\ds \int \sum_{n \mathop = 0}^\infty \paren {-1}^n x^{2 n + 1}$ $\ds$ $=$ $\ds \sum_{n \mathop = 0}^\infty \dfrac {\paren {-1}^n x^{2 n + 2} } {2 n + 2 }$ $\text {(2)}: \quad$ $\ds \int \int \map f x$ $=$ $\ds \int \sum_{n \mathop = 0}^\infty \dfrac {\paren {-1}^n x^{2 n + 2} } {2 n + 2 }$ $\ds$ $=$ $\ds \sum_{n \mathop = 0}^\infty \dfrac {\paren {-1}^n x^{2 n + 3} } {\paren {2 n + 2 } \paren {2 n + 3 } }$ $\text {(3)}: \quad$ $\ds \int \int \int \map f x$ $=$ $\ds \int \sum_{n \mathop = 0}^\infty \dfrac {\paren {-1}^n x^{2 n + 3} } {\paren {2 n + 2 } \paren {2 n + 3 } }$ $\ds$ $=$ $\ds \sum_{n \mathop = 0}^\infty \dfrac {\paren {-1}^n x^{2 n + 4} } {\paren {2 n + 2} \paren {2 n + 3} \paren {2 n + 4} }$

Integrating the equivalent analytic function $3$ times, we get:

### Lemma

$\displaystyle \iiint \dfrac x {x^2 + 1} \rd x \rd x \rd x = x \map \arctan x + \dfrac {\paren {x^2 - 1} \map \ln {x^2 + 1} - 3 x^2} 4$

with all integration constants at $0$.

$\Box$

We now have:

$\ds \sum_{n \mathop = 0}^\infty \dfrac {\paren {-1}^n x^{2 n + 4} } {\paren {2 n + 2} \paren {2 n + 3} \paren {2 n + 4} } = x \map \arctan x + \dfrac {\paren {x^2 - 1} \map \ln {x^2 + 1} - 3 \paren x^2} 4$

Next we confirm that the infinite geometric sequence on the left hand side will converge at $x = 1$.

We are guaranteed convergence by the Alternating Series Test:

$\map f 1 = \dfrac 1 {2 \times 3 \times 4} - \dfrac 1 {4 \times 5 \times 6} + \dfrac 1 {6 \times 7 \times 8} + \cdots + \dfrac {\paren {-1}^n } {\paren {2 n + 2} \paren {2 n + 3} \paren {2 n + 4} }$

Finally, we substitute $x = 1$ to obtain our desired result:

 $\ds \sum_{n \mathop = 0}^\infty \dfrac {\paren {-1}^n} {\paren {2 n + 2} \paren {2 n + 3} \paren {2 n + 4} }$ $=$ $\ds \paren 1 \map \arctan 1 + \dfrac {\paren {1^2 - 1} \map \ln {1^2 + 1} - 3 \paren 1^2} 4$ $\ds \sum_{n \mathop = 1}^\infty \dfrac {\paren {-1}^{n + 1} } {\paren {2 n} \paren {2 n + 1} \paren {2 n + 2} }$ $=$ $\ds \map \arctan 1 - \dfrac 3 4$ $\ds$ $=$ $\ds \dfrac {\pi - 3} 4$

$\blacksquare$