Pluperfect Digital Invariant/Examples/10 Digits

From ProofWiki
Jump to navigation Jump to search

Examples of $10$-Digit Pluperfect Digital Invariants

The only $10$-digit pluperfect digital invariant is:

\(\displaystyle 4 \, 679 \, 307 \, 774\) \(=\) \(\displaystyle 1 \, 048 \, 576 + 60 \, 466 \, 176 + 282 \, 475 \, 249 + 3 \, 486 \, 784 \, 401 + 59 \, 049 + 0 + 282 \, 475 \, 249 + 282 \, 475 \, 249 + 282 \, 475 \, 249 + 1 \, 048 \, 576\)
\(\displaystyle \) \(=\) \(\displaystyle 4^{10} + 6^{10} + 7^{10} + 9^{10} + 3^{10} + 0^{10} + 7^{10} + 7^{10} + 7^{10} + 4^{10}\)


Historical Note

According to David Wells, as reported in his $1985$ work Curious and Interesting Numbers, this $10$-digit pluperfect digital invariant was discovered by Harry L. Nelson.


Sources