Polar Form of Complex Number/Examples/1 - 2i

From ProofWiki
Jump to navigation Jump to search

Example of Polar Form of Complex Number

The complex number $1 - 2 i$ can be expressed as a complex number in polar form as $\polar {\sqrt 5, -\arctan 2}$.


Proof

\(\ds \cmod {1 - 2 i}\) \(=\) \(\ds \sqrt {1^2 + \paren {-2}^2}\) Definition of Complex Modulus
\(\ds \) \(=\) \(\ds \sqrt {1 + 4}\)
\(\ds \) \(=\) \(\ds \sqrt 5\)


Then:

\(\ds \map \cos {\map \arg {1 - 2 i} }\) \(=\) \(\ds \dfrac 1 {\sqrt 5}\) Definition of Argument of Complex Number
\(\ds \leadsto \ \ \) \(\ds \map \arg {1 - 2 i}\) \(=\) \(\ds \map \arccos {\dfrac 1 {\sqrt 5} }\)


\(\ds \map \sin {\map \arg {1 - 2 i} }\) \(=\) \(\ds \dfrac {-2} {\sqrt 5}\) Definition of Argument of Complex Number
\(\ds \leadsto \ \ \) \(\ds \map \arg {1 - 2 i}\) \(=\) \(\ds \map \arccos {-\dfrac 2 {\sqrt 5} }\)


\(\ds \map \tan {\map \arg {1 - 2 i} }\) \(=\) \(\ds \frac {\map \sin {\map \arg {1 - 2 i} } } {\map \cos {\map \arg {1 - 2 i} } }\) Definition of Tangent Function
\(\ds \) \(=\) \(\ds \dfrac {-2 / {\sqrt 5} } {1 / {\sqrt 5} }\)
\(\ds \) \(=\) \(\ds -2\)

Hence:

$\map \arg {1 - 2 i} = \map \arctan {-2} = -\arctan 2$

as $1 - 2 i$ is in Quadrant II.

$\blacksquare$


Sources