Polar Form of Complex Number/Examples/2 - 2i

From ProofWiki
Jump to navigation Jump to search

Example of Polar Form of Complex Number

The complex number $2 - 2 i$ can be expressed as a complex number in polar form as $\polar {2 \sqrt 2, \dfrac {7 \pi} 4}$.


Proof

\(\ds \cmod {2 - 2 i}\) \(=\) \(\ds \sqrt {2^2 + \paren {-2}^2}\) Definition of Complex Modulus
\(\ds \) \(=\) \(\ds \sqrt {2 \times 4}\)
\(\ds \) \(=\) \(\ds 2 \sqrt 2\)


Then:

\(\ds \map \cos {\map \arg {2 - 2 i} }\) \(=\) \(\ds \dfrac 2 {2 \sqrt 2}\) Definition of Argument of Complex Number
\(\ds \) \(=\) \(\ds \frac {\sqrt 2} 2\)
\(\ds \leadsto \ \ \) \(\ds \map \arg {2 - 2 i}\) \(=\) \(\ds \dfrac {\pi} 4 \text { or } \dfrac {7 \pi} 4\) Cosine of $45 \degrees$, Cosine of $315 \degrees$


\(\ds \map \sin {\map \arg {2 - 2 i} }\) \(=\) \(\ds \dfrac {-2} {2 \sqrt 2}\) Definition of Argument of Complex Number
\(\ds \) \(=\) \(\ds -\frac {\sqrt 2} 2\)
\(\ds \leadsto \ \ \) \(\ds \map \arg {2 - 2 i}\) \(=\) \(\ds \dfrac {5 \pi} 4 \text { or } \dfrac {7 \pi} 4\) Sine of $225 \degrees$, Sine of $315 \degrees$


Hence:

$\map \arg {2 - 2 i} = \dfrac {7 \pi} 4$

and hence the result.

$\blacksquare$


Sources