Polynomials of Congruent Ring Elements are Congruent

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $R$ be a commutative ring with unity.

Let $I$ be an ideal of $R$.


Let $x, y \in R$.

Let:

$x \equiv y \pmod I$

where the notation indicates congruence modulo $I$.


Let $\map F X \in R \sqbrk X$ be a polynomial in one variable over $R$.


Then:

$\ds \map F x \equiv \map F y \pmod I$


Proof

Let $\map F X = \ds \sum_{k \mathop = 0}^r a_k X^k$ where $X$ is the indeterminate and $a_0, a_1, \ldots, a_r \in R$.

It has to be shown:

$\ds \sum_{k \mathop = 0}^r a_k x^k \equiv \sum_{k \mathop = 0}^r a_k y^k \pmod I$


From Left Cosets are Equal iff Product with Inverse in Subgroup:

$\forall a, b \in R: a \equiv b \pmod I \iff a + I = b + I$


We have:

\(\ds \paren {\sum_{k \mathop = 0}^r a_k x^k} + I\) \(=\) \(\ds \sum_{k \mathop = 0}^r \paren {a_k x^k + I}\) Quotient Ring Addition is Well-Defined
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 0}^r \paren {\paren{a + I} \paren{x+ I}^k}\) Quotient Ring Product is Well-Defined
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 0}^r \paren {\paren{a + I} \paren{y+ I}^k}\) Left Cosets are Equal iff Product with Inverse in Subgroup
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 0}^r \paren {a_k y^k + I}\) Quotient Ring Product is Well-Defined
\(\ds \) \(=\) \(\ds \paren {\sum_{k \mathop = 0}^r a_k r^k} + I\) Quotient Ring Addition is Well-Defined
\(\ds \leadsto \ \ \) \(\ds \sum_{k \mathop = 0}^r a_k x^k\) \(\equiv\) \(\ds \sum_{k \mathop = 0}^r a_k y^k \pmod I\) Left Cosets are Equal iff Product with Inverse in Subgroup

$\blacksquare$